侵权投诉
首页 / 百科 / 反渗透
反渗透

反渗透

又名:逆渗透
分类: 环保
属性: 技术
最后修改时间: 2013年05月25日
本词条对我有帮助0
  • 反渗透
反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。根据各种物料的不同渗透压,就可以使大于渗透压的反渗透法达到分离、提取、纯化和浓缩的目的。

简介

  反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。对膜一侧的料液施加压力,当压力超过它的渗透压时,溶剂会逆着自然渗透的方向作反向渗透。从而在膜的低压侧得到透过的溶剂,即渗透液;高压侧得到浓缩的溶液,即浓缩液。若用反渗透处理海水,在膜的低压侧得到淡水,在高压侧得到卤水。

  反渗透通常使用非对称膜和复合膜。反渗透所用的设备,主要是中空纤维式或卷式的膜分离设备。

  反渗透膜能截留水中的各种无机离子、胶体物质和大分子溶质,从而取得净制的水。也可用于大分子有机物溶液的预浓缩。由于反渗透过程简单,能耗低,近20年来得到迅速发展。现已大规模应用于海水和苦咸水(见卤水)淡化、锅炉用水软化和废水处理,并与离子交换结合制取高纯水,目前其应用范围正在扩大,已开始用于乳品、果汁的浓缩以及生化和生物制剂的分离和浓缩方面。

基本原理

  把相同体积的稀溶液(如淡水)和浓液(如海水或盐水)分别置于一容器的两侧,中间用半透膜阻隔,稀溶液中的溶剂将自然的穿过半透膜,向浓溶液侧流动,浓溶液侧的液面会比稀溶液的液面高出一定高度,形成一个压力差,达到渗透平衡状态,此种压力差即为渗透压渗透压的大小决定于浓液的种类,浓度和温度与半透膜的性质无关。若在浓溶液侧施加一个大于渗透压的压力时,浓溶液中的溶剂会向稀溶液流动,此种溶剂的流动方向与原来渗透的方向相反,这一过程称为反渗透。

  1.溶解-扩散模型

  Lonsdale等人提出解释反渗透现象的溶解-扩散模型。他将反渗透的活性表面皮层看作为致密无孔的膜,并假设溶质和溶剂都能溶于均质的非多孔膜表面层内,各自在浓度或压力造成的化学势推动下扩散通过膜。溶解度的差异及溶质和溶剂在膜相中扩散性的差异影响着他们通过膜的能量大小。其具体过程分为:第一步,溶质和溶剂在膜的料液侧表面外吸附和溶解;第二步,溶质和溶剂之间没有相互作用,他们在各自化学位差的推动下以分子扩散方式通过反渗透膜的活性层;第三步,溶质和溶剂在膜的透过液侧表面解吸。

  在以上溶质和溶剂透过膜的过程中,一般假设第一步、第三步进行的很快,此时透过速率取决于第二步,即溶质和溶剂在化学位差的推动下以分子扩散方式通过膜。由于膜的选择性,使气体混合物或液体混合物得以分离。而物质的渗透能力,不仅取决于扩散系数,并且决定于其在膜中的溶解度。

  2.优先吸附—毛细孔流理论

  当液体中溶有不同种类物质时,其表面张力将发生不同的变化。例如水中溶有醇、酸、醛、脂等有机物质,可使其表面张力减小,但溶入某些无机盐类,反而使其表面张力稍有增加,这是因为溶质的分散是不均匀的,即溶质在溶液表面层中的浓度和溶液内部浓度不同,这就是溶液的表面吸附现象。当水溶液与高分子多孔膜接触时,若膜的化学性质使膜对溶质负吸附,对水是优先的正吸附,则在膜与溶液界面上将形成一层被膜吸附的一定厚度的纯水层。它在外压作用下,将通过膜表面的毛细孔,从而可获取纯水。

  3.氢键理论

  在醋酸纤维素中,由于氢键和范德华力的作用,膜中存在晶相区域和非晶相区域两部分。大分子之间存在牢固结合并平行排列的为晶相区域,而大分子之间完全无序的为非晶相区域,水和溶质不能进入晶相区域。在接近醋酸纤维素分子的地方,水与醋酸纤维素羰基上的氧原子会形成氢键并构成所谓的结合水。当醋酸纤维素吸附了第一层水分子后,会引起水分子熵值的极大下降,形成类似于冰的结构。在非晶相区域较大的孔空间里,结合水的占有率很低,在孔的中央存在普通结构的水,不能与醋酸纤维素膜形成氢键的离子或分子则进入结合水,并以有序扩散方式迁移,通过不断的改变和醋酸纤维素形成氢键的位置来通过膜。

  在压力作用下,溶液中的水分子和醋酸纤维素的活化点——羰基上的氧原子形成氢键,而原来水分子形成的氢键被断开,水分子解离出来并随之移到下一个活化点并形成新的氢键,于是通过一连串的氢键形成与断开,使水分子离开膜表面的致密活性层而进入膜的多孔层。由于多孔层含有大量的毛细管水,水分子能够畅通流出膜外。
 

应用范围

  单级反渗透适合电导率小于500μS/cm的水质;

  出水电导率 1-10uS/cm;

  工艺流程:通过原水箱收集原水,采用了增压泵进行水压辅助,原水通过水压泵输送到石英砂过滤器、活性碳过滤器和阳离子软化器进行初步的水处理,经过预处理的水在经过精密过滤器(又称保安过滤器)和反渗透主机,进行反渗透处理,反渗透主机主要的纯净水处理系统,将处理完成的水通过水汽混合器进行,输送,纯净水处理完成后,通过专业的灌装设备进型灌装称为大桶纯净水或者小瓶纯净水。
 

应用现状

  在各种膜分离技术中,反渗透技术是近年来国内应用最成功、发展最快、普及最广的一种。估计自1995年以来,反渗透膜的使用量每年平均递增20%;据保守的统计,1999年工业反渗透膜元件的市场供应量为8英寸膜6000支,4英寸膜26000支。2000年和2001年的市场更为强劲,膜用量一年比一年有较大幅度的提高。据估算,反渗透技术的应用已创造水处理行业全年10亿人民币以上的产值。

  国内反渗透膜工业应用的最大领域仍为大型锅炉补给水、各种工业纯水,饮用水的市场规模次之,电子、半导体、制药、医疗、食品、饮料、酒类、化工、环保等行业的应用也形成了一定规模。

  反渗透膜最新进展

  超低压膜由于节省电耗和降低相关机械部件的压力等级引起材料费下降等优点,自1999年以来超低压膜的应用比重日益增大,这在以使用4英寸膜为主的小型装置中应用最为突出,大型装置中应用超低压膜也呈上升趋势,目前使用超低压膜的最大装置的产水量为650吨/小时。

  低污染膜膜污染是反渗透应用中的最大危害。目前已有几种抗污染性能强、使用寿命长、清洗频度低且易清洗的低污染膜问世。

  带正电荷的反渗透膜现在广泛应用的低压、超低压复合膜的材质均为芳香族聚酸胺,其膜表面均带有负电荷,现已有膜厂家开发出表面带正电荷的低压复合膜,这种膜主要应用于制备高电阻率的高纯水系统中。日本日东电工公司生产的正电荷膜ES10C已在半导体行业的三级反渗透系统中实现10-15兆欧电阻率的高纯水;韩国现代电子公司的3个生产厂的合计最终产水800吨/小时的三级反渗透系统的产水电阻率为8-9兆欧;上海某半导体厂的170吨/小时的三级反渗透系统也达到上述指标。另外,在国内几个制药厂的5-20吨/小时规模的两级反渗透系统中也实现了反渗透产水电阻率为1.7-3兆欧。

  耐高温、食品级、卫生级反渗透膜普通水处理用反渗透膜的使用温度均为0-45摄氏度,但在需要耐90摄氏度高温杀菌的特殊场合,可使用耐高温、耐化学药品的反渗透膜。此外,各种有特殊膜元件结构的食品级或卫生级的反渗透膜也开始在国内应用。

  • 快速搜索
  • 热门词条

粤公网安备 44030502002758号