“近零排放”的概念不清,一般是以“燃机排放标准”作为判断根据,对排放标准的表面化错误理解造成荒谬的结果。
国内外并没有公认的燃煤电厂大气污染物“近零排放”的定义,实际应用中多种表述共存,如“近零排放”、“趋零排放”、“超低排放”、“超洁净排放”、“低于燃机排放标准排放”等。从各种表述和案例中分析得出的共同特点,是把燃煤电厂排放的烟尘、二氧化硫和氮氧化物3项大气污染物与《火电厂大气污染物排放标准》(GB13223-2011)(以下简称“排放标准”)中规定的燃机要执行“大气污染物特别排放限值”(以下简称“特别排放限值”)相比较,将达到或者低于燃机排放限值(即烟尘5mg/m3、二氧化硫35mg/m3、氮氧化物50mg/m3)的情况称为燃煤机组的“近零排放”。
然而,从以下的分析中可以看出这也只是表面化的严格。
我国火电厂大气污染物的排放限值是采用“浓度”来表示的,因此,“达标排放”是指烟气中的污染物浓度不超过标准规定的浓度限值。由于污染物的“浓度”是由污染物的质量和烟气体积两个因素构成,烟气中的氧含量越高,说明燃烧过程中过剩空气越多,污染物浓度就越低。为防止用空气稀释浓度达标的现象,“排放标准”规定了用“基准含氧量”折算的方法。“基准含氧量”是根据典型的燃料和典型的燃烧技术来规定的,规定燃煤锅炉为6%、燃气轮机为15%。
经粗略换算,可以理解为在典型情况下,燃煤锅炉燃烧所用的实际空气量是理论空气量的1.4倍(也即空气过剩系数α=1.4),而燃气轮机所用的实际空气是理论空气的3.5倍(α=3.5)。虽然在实际工作中不论燃煤还是燃机,往往都是非典型情况,所以都必须要以各自的“基准含氧量”进行折算,但由于“基准”本身就不同,折算后的污染物浓度也是不可直接相比的。如果将燃机和燃煤的排放限制按相同“基准含氧量”折算的话,燃机排放限值的数值是原来值的2.5倍,即烟尘、二氧化硫、氮氧化物的排放限值分别由5mg/m3、35mg/m3、50mg/m3变为12.5mg/m3、87.5mg/m3、125mg/m3。换句话说,除了燃机烟尘的排放限值稍低于燃煤烟气的特别排放限值外,二氧化硫、氮氧化物反而更宽松,将3项污染物合起来计算,燃机比燃煤排放限值要宽松32.4%。这就是“表面”上看起来更严的燃机排放限值实则不然的原因。
再从排放总量看,经测算,典型300MW燃煤锅炉(标态烟气量100万m3/h,空气过剩系数α=1.3),烟尘、二氧化硫、氮氧化物分别按5mg/m3、35mg/m3、50mg/m3排放时,每小时排放量分别大约为5.4千克、37.8千克、54千克;而300MW级燃机(标态烟气量185万m3/h,空气过剩系数α=3.5),依排放限值要求每小时可以排放9.25千克、64.25千克、92.5千克,可见,每小时燃机排放总量是燃煤排放的1.7倍。显然,这样的“近零排放”的要求是荒谬的。
烟气连续监测技术难以支撑“近零排放”监测数据的准确性,用日平均浓度或者多日平均浓度的监测数据与排放限值直接比较是概念性错误,运行时间不足也难以证明“近零排放”系统的稳定性。
在客观上和技术上,现有监测手段不支持“近零排放”,说的更清楚一点“近零排放”的监测数据是不可信的。
大型燃煤电厂大气污染控制所采用的除尘、脱硫、脱硝主流技术和主体工艺、设备,近几十年来并没有重大突破,世界范围内基本上都是采用上世纪中后期开发的成熟技术。从已经“实现”“近零排放”所采用的技术看,主要是对已有技术和设备潜力(或者裕量)的挖掘、辅机的改造、系统优化、大马拉小车式的设备扩容量、材料的改进、昂贵设备的使用等。“近零排放”在技术上并没有重大创新,且严苛的条件并非一般燃煤电厂都能达到。