随着信息化与工业化的深度融合,信息技术渗透到了工业企业产业链的各个环节,条形码、二维码、工业传感器、工业自动控制系统、工业物联网等技术在工业企业中得到广泛应用,尤其是互联网、移动互联网、物联网等新一代信息技术在工业领域的应用,工业企业也进入了互联网工业的新的发展阶段,工业企业所拥有的数据也日益丰富。工业企业中生产线处于高速运转,由工业设备所产生、采集和处理的数据量远大于企业中计算机和人工产生的数据,从数据类型看也多是非结构化数据,生产线的高速运转则对数据的实时性要求也更高。
工业
大数据应用将带来工业企业创新和变革的新时代。通过互联网、移动物联网等带来的低成本感知、高速移动连接、分布式计算和高级分析,信息技术和全球工业系统正在深入融合,给全球工业带来深刻的变革,创新企业的研发、生产、运营、营销和管理方式。这些创新给不同行业的工业企业带来了更快的速度、更高的效率和更强的洞察力。工业大数据的典型应用包括产品创新、产品故障诊断与预测、工业生产线物联网分析、工业企业供应链优化和产品精准营销等各个方面。
背景
在工业生产中,无时不刻都在产生数据。生产机床的转速、
能耗,食品加工的温湿度,
火力发电机组的燃烧和燃煤消耗,汽车的装备数据,物流车队的位置和速度等,都是在生产过程中的数据。
自从工业从社会生产中独立成为一个门类以来,工业生产的
数据采集、使用范围就逐步加大。从泰勒拿着秒表计算工人的用铁锹送煤到锅炉的时间开始,是对制造管理数据的采集和使用;福特汽车的流水化生产,是对汽车生产过程的工业数据的采集和工厂内使用;丰田的精益生产模式,将数据的采集和使用扩大到工厂和上下游供应链;
核电站发电过程中全程
自动化将生产过程数据的自动化水平提高到更高程度。
任何数据的采集和使用都是有成本的,工业数据也不例外。但随着信息、电子和数学技术的发展,传感器、物联网等技术的发展,一批
智能化、高精度、长续航、高性价比、微型传感器面世,以物联网为代表的新一代网络技术在移动
数据通信的支持下,能做到任何时间、任何地点采集、传送数据。以
云计算为代表的新型数据处理基础架构,大幅降低工业数据处理的技术门槛和成本支出。以工业领域的
SCADA系统为例,传统模式下每个电网、化工企业都需要建立一套SCADA系统,成本在千万以上,如果采用云架构模式,成本将可以降低7成以上。
社会需求变革是最大拉动力。在商品过剩经济时代,以个性化为代表的消费文化,使得工业企业的产出物,要最大限度匹配个性需求。从服装定制,车辆选配,到T恤的印花和个性化教育。
要响应个性化需求,有两种方式,以服装定制为例,就是靠老师傅用尺子量,眼见手摸,凭借经验,确定服装的裁剪和版型,这种我们可以称之为模拟方式,效率和质量难以保证,耗时长,个性化定制的成本高;还有一种是数字方式,就是通过制订一套数据采集手段,由前台的客户代表测量采集用户身形数据,然后将数据传回总部,将结合生产原材料数据,将需求分解为一项一项的生产工艺动作,最后也生产出达到定制化要求服装。
当然了,工厂也会聘请资深的老师傅,他们的主要工作不是面对一个个客户的定制化需求,而是去研究更好的生产工艺,对数据和工艺分解进行把控。这种模式下,效率和质量得到保证,效率随着生产线的扩容线性提升,有一批专家队伍不断研究提升工艺能力,定制化生产的成本将得以显著摊薄。从发展趋势看,后者这种数字模式的个性化生产将是未来选择。
国策方针是重要影响力。完成了
工业自动化过程的德国工业界,在自动化基础上,以工业数据为基础,引入云计算和
人工智能技术,提升工业的智能化水平,以满足大批量个性化定制的社会生产需求;美国拥有强大的云计算、互联网及数据处理能力,基于此,提出
工业互联网战略,将单个设备、单条生产线、单个工厂的数据联网,通过大数据处理后,在诊断、预测、后服务等方面挖掘工业服务的价值。
中国相对于德国、美国而言,在工业自动化、在云计算等领域都处于发展期,因此提出
中国制造2025计划,通过工业化和信息化融合发展的方式,将工业化和信息化整体规划,并制定一系列的重点工程和推进计划。
特点
不管是工业自动化、还是工业智能化(
工业4.0)、或者是工业互联网概念,他们的基础是工业数据。
随着行业发展,工业企业收集的数据维度不断扩大。主要体现在三个方面:
一是时间维度不断延长。经过多年的生产经营,积累下来历年的产品数据、工业数据、原材料数据和生产设备数据;二是数据范围不断扩大。随着企业信息化建设的过程,一方面积累了企业的财务、供应商数据,也通过
CRM系统积累了客户数据,通过
CAD等积累了研发过程数据,通过摄像头积累了生产安全数据等,另一方面越来越多的外部数据也被收集回来,包括市场数据、社交网络数据、企业舆情数据等;三是数据粒度不断细化。从一款产品到多款、多系列产品使得产品数据不断细化,从单机机床到联网机床,使得数据交互频率大大增强;加工精度从1mm提升到0.2mm,从5分钟每次的统计到每5秒的全程监测,都使得采集到的数据精细度不断提升。
以上三个维度最终导致企业所积累的数据量以加速度的方式在增加,构成了工业大数据的集合。不管企业是否承认,这些数据都堆砌在工厂的各个角落,而且在不断增加。
分类
从企业经营的视角来看待这些工业数据。可以按照数据的用途分成三类:
第一类是经营性数据,比如财务、资产、人事、供应商基础信息等数据,这些数据在企业信息化建设过程中陆陆续续积累起来,表现了一个工业企业的经营要素和成果。
第二类是生产性数据,这部分是围绕企业生产过程中积累的数据,包括原材料、研发、生产工艺、半成品、成品、售后服务等。随着数字机床、自动化生产线、SCADA系统的建设,这些数据也被企业大量记录下来。这些数据是工业生产过程中价值增值的体现,是决定企业差异性的核心所在。
第三类是环境类数据,包括布置在机床的设备诊断系统,库房、车间的温湿度数据,以及能耗数据,废水废气的排放等数据。这些数据对工业生产过程中起到约束作用。
从目前的数据采用情况看,经营类数据利用率最高,生产性数据和环境类数据相比差距比较大。从未来数据量来说,生产线数据在工业企业数据中的占比将越来越大,环境类数据也将越来越多样化。
一般意义上,大数据有具有数据量大、数据种类多、商业价值高、处理速度高,在此基础上,工业大数据还有两大特点。一是准确率高,大数据一般的应用场景是预测,在一般性商业领域,如果预测准确率达到90%已经是很高了,如果是99%就是卓越了。但在工业领域的很多应用场景中,对准确率的要求达到99.9%甚至更高,比如轨道交通自动控制,再比如定制生产,如果把甲乙客户的订单参数搞混了,就会造成经济损失。二是实时性强,工业大数据重要的应用场景是实时监测、实时预警、实时控制。一旦数据的采集、传输和应用等全处理流程耗时过长,就难以在生产过程中发挥价值。