侵权投诉
首页 / 百科 / 量子态隐形传输
量子态隐形传输

量子态隐形传输

分类: 光通讯
属性: 技术
最后修改时间: 2016年05月09日
本词条对我有帮助0
量子态隐形传输就是指利用“量子纠缠”技术,借助卫星网络、光纤网络等经典信道,传输量子态携带的量子信息。量子态隐形传输是一种全新的通信方式,它传输的不再是经典信息而是量子态携带的量子信息,是未来量子通信网络的核心要素。利用量子纠缠技术,需要传输的量子态如同科幻小说中描绘的“超时空穿越”,在一个地方神秘消失,不需要任何载体的携带,又在另一个地方瞬间神秘出现。

  发展

  1997年奥地利蔡林格小组在室内首次完成了量子态隐形传输的原理性实验验证,2004年该小组利用多瑙河底光纤信道,成功地将量子态隐形传输距离提高到600米。

  2004年,中国科学技术大学的潘建伟、彭承志等研究人员开始探索在自由空间信道中实现更远距离的量子通信。该小组2005年在合肥创造了13公里的双向量子纠缠分发世界纪录,同时验证了在外层空间与地球之间分发纠缠光子对的可行性。

  2007年开始,中国科学技术大学-清华大学联合研究小组开始在北京八达岭与河北怀来之间架设长达16公里的自由空间量子信道,并取得了一系列关键技术突破,最终在2009年成功实现了世界上最远距离的量子隐形传态,证实了量子隐形传态过程穿越大气层的可行性,为未来基于卫星中继的全球化量子通信网鉴定了可靠基础。除此之外,联合小组还在该研究平台上针对未来空间量子通信需求开展了诱骗态量子密钥分发等多个方向的研究,取得了丰富的成果。

  2012年8月,中国科学家潘建伟等人在国际上首次成功实现百公里量级的自由空间量子隐形传态和纠缠分发,为发射全球首颗“量子通讯卫星”奠定技术基础。“在高损耗的地面成功传输100公里,意味着在低损耗的太空传输距离将能达到1000公里以上,基本上解决了量子通讯卫星的远距离信息传输问题。

  2012年9月,维也纳大学和奥地利科学院的物理学家实现了量子态隐形传态最远距离——143公里,创造了新的世界纪录。

  最新成果

  据国外媒体报道,欧洲空间局位于加那利群岛的光学观测站创造了一项新的世界纪录,实现了跨越143公里的量子态隐形传输。来自奥地利、加拿大、德国以及挪威的研究人员将一个光子的物理特性通过量子态隐形传输发送往另一处的一个粒子,实现了位于拉帕尔马卡普坦望远镜与欧洲空间局特内里费岛光学观测站之间143公里的“隐形传输”。

  欧洲空间局两处相距143公里的观测站之间实现了量子态隐形传输。

  本项研究成果已经发表在最新的《自然》杂志上,科学家认为一旦两个粒子之间发生纠缠,那么它们之间似乎就建立起了某种联系,无论两个粒子距离多么遥远,其中一个粒子状态的改变也会引起另一个粒子的变化,而这之间并没有任何物理信号的传递。爱因斯坦对量子纠缠的现象也感到困惑,被喻为幽灵般的超距离作用,科学家希望通过这项技术实现量子通信。

  根据欧洲空间局负责该项目的研究人员埃里克·威尔(Eric Wille)介绍:“这是一次成功的远距离量子通信,第一次在实验室条件下实现了量子态隐形传输,该项目的挑战在于两个光子之间的距离达到了143公里,尽管距离遥远以及在大气扰动的情况下,两个光子之间仍然可以实现量子态隐形传输。”

  在进行涉及量子纠缠的低信噪比实验中,需要非常小心,需要安装超低噪音的光子探测器,以及一个单独进程的量子纠缠被用于维持两个测试站的时钟同步,控制在三十亿分之一秒之内。这些实验条件有助于确保探测到光子,最好的GPS信号能够控制在一百亿分之一秒内。即使有了这样的测试精度,该团队由于恶劣的天气被迫将该实验推迟了一年,而在2011年的实验却以失败告终。

  两处欧洲空间局的观测站位于2400米海拔之上,不得不面对一些恶劣的气象条件,比如大雨、雾、大风或者大雪天气,甚至是沙尘暴,但是实验终于在五月份开始进行,并最终创造了量子态隐形传输的新记录。根据奥地利科学家博士鲁珀特·乌尔辛(Rupert Ursin)介绍:“我们下一步将会在地面观测站与地球轨道卫星之间建立一次量子态隐形传输的实验,验证实现全球范围内量子通信的可能性。”

  2012年12月10日英国《每日邮报》消息,加拿大Hyperstealth生物科技公司研发出一种先进的伪装布料。这种伪装布料被称之为“量子隐形”(Quantum Stealth),能够弯曲周围的光波,进而达到隐形效果。

  “量子隐形”(Quantum Stealth)

  它是一种轻型材料,造价也不高,可广泛用于各类电器及建筑装饰中,可以将其包裹在各类材质的表面将其达到隐身的效果。

  隐形传输

  中国实现世界上最远距离的量子态隐形传输

  量子态隐形传输穿越大气层证实为全球化量子通信网络奠定基础。

  由中国科大和清华大学组成的联合小组成功实现了世界上最远距离的量子态隐形传输,16公里的传输距离比原世界纪录提高了20多倍。实验结果首次证实了在自由空间进行远距离量子态隐形传输的可行性,为全球化量子通信网络最终实现奠定了重要基础。

  据联合小组研究成员彭承志教授介绍,量子态隐形传输是一种全新通信方式,它传输的不再是经典信息而是量子态携带的量子信息,是未来量子通信网络的核心要素。利用量子纠缠技术,需要传输的量子态如同科幻小说中描绘的“超时空穿越”,在一个地方神秘消失,不需要任何载体的携带,又在另一个地方瞬间神秘出现。这一奇特的现象引起了学术界广泛兴趣。2004年,这个小组利用多瑙河底的光纤信道,成功地将量子态隐形传输距离提高到600米。但由于光纤信道中的损耗和环境的干扰,量子态隐形传输的距离难以大幅度提高。

  2004年,中国科大潘建伟、彭承志等研究人员开始探索在自由空间实现更远距离的量子通信。在自由空间,环境对光量子态的干扰效应极小,而光子一旦穿透大气层进入外层空间,其损耗更是接近于零,这使得自由空间信道比光纤信道在远距离传输方面更具优势。这个小组2005年在合肥创造了13公里的自由空间双向量子纠缠分发世界纪录,同时验证了在外层空间与地球之间分发纠缠光子的可行性。2007年开始,中国科大——清华大学联合小组在北京八达岭与河北怀来之间架设长达16公里的自由空间量子信道,并取得了一系列关键技术突破,最终在2009年成功实现了世界上最远距离的量子态隐形传输,证实了量子态隐形传输穿越大气层的可行性,为未来卫星中继的全球化量子通信网络奠定了可靠基础。

  联合小组在自由空间量子通信领域的一系列工作,得到了科技部重大科学研究计划、中科院知识创新工程重大项目和国家自然科学基金项目等支持,并引起了国际学术界的广泛关注,出版的英国《自然》杂志子刊《自然·光子学》以封面论文形式发表了这一研究成果。英国的《新科学家》、美国的《今日物理》、美国物理学会新闻网站均及时报道了这个研究成果。

  穿大气层

  1997年,奥地利蔡林格小组在室内首次完成了量子态隐形传输的原理性实验验证;2004 年,该小组利用多瑙河底的光纤信道,成功地将量子态隐形传输距离提高到600米。

  2004年开始,潘建伟、彭承志等研究人员开始探索在自由空间信道中实现更远距离的量子通 信。在自由空间信道中,光子传输几乎不存在退相干效应,而一旦穿透大气层进入到外层空间,光子的损耗更是接近于零,这使得自由空间信道相比光纤信道在大尺 度上具有特别的优势。该小组于2005年在合肥创造了13公里的双向量子纠缠分发世界纪录,同时验证了在外层空间与地球之间分发纠缠光子对的可行性。2007年开始,中国科大-清华大学联合研究小组开始在北京八达岭与河北怀来之间架设长达16公里的自由空间量子信道,并取得了一系列关键技术突破,最终 在2009年成功实现了世界上最远距离的量子隐形传态,证实了量子隐形传态过程穿越大气层的可行性,为未来基于卫星量子中继的全球化量子通信网奠定了可靠 基础。

  彭承志告诉记者,量子纠缠做为量子信息科学的核心资源,是国际上的研究热点,基于量子纠缠的量子态隐形传输是量子计算和量子中继中的基本过程,而16公里这个距离能够等效大气的有效厚度,对于未来实用化全球量子通信网络的建立具有十分重要的 意义。这样的自由空间量子通信的前景就是,未来发射卫星上天,利用卫星平台中转实现全球化量子通信。

  中国科学家在自由空间量子通信方向上的一系列工作引起了国际学术界的广泛关注。英国的《新科学家》(New Scientist)、美国的《今日物理》(Physics Today)、真实世界等多家学术新闻媒体均对这些工作进行了报道。

  • 快速搜索
  • 热门词条

粤公网安备 44030502002758号