侵权投诉
首页 / 百科 / 云计算
云计算

云计算

又名:云端运算(Cloudcomputing)
分类: 云计算
属性: 技术
最后修改时间: 2024年03月25日
本词条对我有帮助46
云计算(Cloud computing),是一种基于互联网的计算新方式,通过互联网上异构、自治的服务为个人和企业用户提供按需即取的计算。由于资源是在互联网上,而在计算机流程图中,互联网常以一个云状图案来表示,因此可以形象地类比为云,‘云’同时也是对底层基础设施的一种抽象概念。

       云计算的资源是动态易扩展而且虚拟化的,通过互联网提供。终端用户不需要了解“云”中基础设施的细节,不必具有相应的专业知识,也无需直接进行控制,只关注自己真正需要什么样的资源以及如何通过网络来得到相应的服务。

       云计算可以认为包括以下几个层次的服务:基础设施即服务(IaaS),平台即服务(PaaS)和软件即服务(SaaS)。云计算服务通常提供通用的通过浏览器访问的在线商业应用,软件和数据可存储在数据中心

概述

       “云”实质上就是一个网络,狭义上讲,云计算就是一种提供资源的网络,使用者可以随时获取“云”上的资源,按需求量使用,并且可以看成是无限扩展的,只要按使用量付费就可以,“云”就像自来水厂一样,我们可以随时接水,并且不限量,按照自己家的用水量,付费给自来水厂就可以。 

       从广义上说,云计算是与信息技术、软件、互联网相关的一种服务,这种计算资源共享池叫做“云”,云计算把许多计算资源集合起来,通过软件实现自动化管理,只需要很少的人参与,就能让资源被快速提供。也就是说,计算能力作为一种商品,可以在互联网上流通,就像水、电、煤气一样,可以方便地取用,且价格较为低廉。

       总之,云计算不是一种全新的网络技术,而是一种全新的网络应用概念,云计算的核心概念就是以互联网为中心,在网站上提供快速且安全的云计算服务与数据存储,让每一个使用互联网的人都可以使用网络上的庞大计算资源与数据中心。

       云计算是继互联网、计算机后在信息时代又一种新的革新,云计算是信息时代的一个大飞跃,未来的时代可能是云计算的时代,虽然目前有关云计算的定义有很多,但总体上来说,云计算虽然有许多的含义,但概括来说,云计算的基本含义是一致的,即云计算具有很强的扩展性和需要性,可以为用户提供一种全新的体验,云计算的核心是可以将很多的计算机资源协调在一起,因此,使用户通过网络就可以获取到无限的资源,同时获取的资源不受时间和空间的限制。

       云计算指通过计算机网络(多指因特网)形成的计算能力极强的系统,可存储、集合相关资源并可按需配置,向用户提供个性化服务。

对比

       云计算常与格网计算(分布式计算的一种,由一群松散耦合的计算机集组成的一个超级虚拟计算机,常用来执行大型任务)、效用计算(IT资源的一种打包和计费方式,比如按照计算、存储分别计量费用,像传统的电力等公共设施一样)、自主计算(具有自我管理功能的计算机系统)相混淆。

       事实上,许多云计算部署依赖于计算机集群(但与网格的组成、体系机构、目的、工作方式大相径庭),也吸收了自主计算和效用计算的特点。

       它从硬件结构上是一种多对一的结构,从服务的角度或从功能的角度它是一对多的。 (1)例如,今天要设计一供应链管理系统,可以先从市面上提供的免费云服务器主机,将Application放置主机上,使用MS所提供数据库,这样一来,硬件城本大幅降低,将Application放置云上,且随时随地于任何终端设备上链接互联网,就能访问数据(因为基于公开的标准协议). (2)云科技,在2009年开始至今,对于任何企业都吹起一股风潮,除了数据访问方便,营运成本大幅降低(例如,办公室软件,操作系统,硬件设备),都能通过云技术的提供,免费使用.现今很多企业在创业时,都采用云技术,来降低成本,以提高企业竞争能力.

       丛集计算:比起云计算,丛集计算着重在高效能,串连各别CPU的计算能力,而非着重在提供服务。 虽然云计算的底层有部分是由丛集计算所构成,像是负载平衡或备援技术。丛集计算所提供的效能固然强劲,然而建置成本也相对昂贵,一般民众与研究单位大多无法负荷。因此利用商用硬件(Commodity Hardware)的组装计算机,渐渐成为另一新主流。众多原本应用在丛集计算机上的库或操作系统,也逐渐地移植在商用计算机上运行。其中Unix操作系统,就是从大型工作站,演进到现在一般用户皆可使用的最好示例。除了建置成本的问题外,另一个丛集计算的缺点,在于需要完全同规格的硬件。不同的硬件、环境上,丛集计算很难组合运作,在软件上也有同样困扰,为了效能,可能针对操作系统的版本,使用的库去限制,让不同的站点(Site)间必须重新设计开发许多的转换程序才能集成。此外,跨网络区域的连接与使用皆会遇到网络安全性的问题。为了解决以上问题,派生了另一技术,称做格网技术。

       网格计算:格网这个名词,在英文中,较多用在电力格网(Power Grid)领域中,因此也有人称为网格。 在格网计算的始祖Ian Foster的论文中,将格网计算发展的远景,类似电力或水力,在需要使用时便随手可得。然而格网计算,常会被拿来与丛集计算比较。在讨论格网计算中常常会提到虚拟组织(VO, Virtual Organization),与W3C的技术规格。格网计算就是利用现有的丛集计算以及Web观念作为底层,也有人认为格网技术是下一代的Web 3.0。但是格网技术是完全不同的目的,最主要还是增加资源的利用性,并非追求效能。 资源的收集,控制,服务等议题便成为格网中间件(Middleware)的主要目标。 我们可以试着以“漏斗”这样的观念去想像,漏斗的下方是资源,由中央的中间件进行收集,再由更上层的软件去应用。这样的观念也逐渐扩充到其他领域,包括数据格网(Data Grid)。中间所有的协议,都以W3C所制订的规格为主,如HTTP,XML等。因此按照网格概念所设计的中间件,可用来管理上万台甚至数十万台计算机,并且将其纳入计算或存储资源中。

       云计算与网格计算的最大差异在于计算量,云计算大都以单一主机服务用户,主要较偏向少量而多次的计算,少次而大量的计算易使资源用尽,致使其他服务停摆或拒绝服务;网格计算是以多主机来做计算支持,在少次而大量的计算时较为有效率,在此情况下,网格计算域内的计算机资源可互相支持,不会有资源用尽的疑虑。

特点

       云计算的可贵之处在于高灵活性、可扩展性和高性比等,与传统的网络应用模式相比,其具有如下优势与特点:

       1、虚拟化技术。

       必须强调的是,虚拟化突破了时间、空间的界限,是云计算最为显著的特点,虚拟化技术包括应用虚拟和资源虚拟两种。众所周知,物理平台与应用部署的环境在空间上是没有任何联系的,正是通过虚拟平台对相应终端操作完成数据备份、迁移和扩展等。

       2、动态可扩展。

云计算具有高效的运算能力,在原有服务器基础上增加云计算功能能够使计算速度迅速提高,最终实现动态扩展虚拟化的层次达到对应用进行扩展的目的。 

       3、按需部署。

       计算机包含了许多应用、程序软件等,不同的应用对应的数据资源库不同,所以用户运行不同的应用需要较强的计算能力对资源进行部署,而云计算平台能够根据用户的需求快速配备计算能力及资源。

       4、灵活性高。

       目前市场上大多数IT资源、软、硬件都支持虚拟化,比如存储网络、操作系统和开发软、硬件等。虚拟化要素统一放在云系统资源虚拟池当中进行管理,可见云计算的兼容性非常强,不仅可以兼容低配置机器、不同厂商的硬件产品,还能够外设获得更高性能计算。

       5、可靠性高。

       倘若服务器故障也不影响计算与应用的正常运行。因为单点服务器出现故障可以通过虚拟化技术将分布在不同物理服务器上面的应用进行恢复或利用动态扩展功能部署新的服务器进行计算。

       6、性价比高。

       将资源放在虚拟资源池中统一管理在一定程度上优化了物理资源,用户不再需要昂贵、存储空间大的主机,可以选择相对廉价的PC组成云,一方面减少费用,另一方面计算性能不逊于大型主机。

       7、可扩展性。

       用户可以利用应用软件的快速部署条件来更为简单快捷的将自身所需的已有业务以及新业务进行扩展。如,计算机云计算系统中出现设备的故障,对于用户来说,无论是在计算机层面上,亦或是在具体运用上均不会受到阻碍,可以利用计算机云计算具有的动态扩展功能来对其他服务器开展有效扩展。这样一来就能够确保任务得以有序完成。在对虚拟化资源进行动态扩展的情况下,同时能够高效扩展应用,提高计算机云计算的操作水平。

体系架构 

云层次结构

       截止到2009年,大部分的云计算基础构架是由通过数据中心传送的可信赖的服务和建立在服务器上的不同层次的虚拟化技术组成的。人们可以在任何有提供网络基础设施的地方使用这些服务。“云”通常表现为对所有用户的计算需求的单一访问点。人们通常希望商业化的产品能够满足产品质量(QoS)的要求,并且一般情况下要提供服务水平协议。开放标准对于云计算的发展是至关重要的,并且开源软件已经为众多的云计算实例提供了基础。

       云的基本概念,是通过网络将庞大的计算处理程序自动分拆成无数个较小的子程序,再由多部服务器所组成的庞大系统搜索、计算分析之后将处理结果回传给用户。通过这项技术,远程的服务供应商可以在数秒之内,达成处理数以千万计甚至亿计的信息,达到和“超级计算机”同样强大效能的网络服务。它可分析DNA结构、基因图谱定序、解析癌症细胞等高级计算,例如Skype以点对点(P2P)方式来共同组成单一系统;又如Google通过Map Reduce架构将数据拆成小块计算后再重组回来,而且Big Table技术完全跳脱一般数据库数据运作方式,以row设计存储又完全的配合Google自己的文件系统(GFS),以帮助数据快速穿过“云”。

       云计算的产业三级分层:云软件、云平台、云设备。 上层分级:云软件 Software as a Service (SaaS) 打破以往大厂垄断的局面, 所有人都可以在上面自由挥洒创意,提供各式各样的软件服务。 参与者:世界各地的软件开发者; 中层分级:云平台 Platform as a Service (PaaS) 打造程序开发平台与操作系统平台, 让开发人员可以通过网络撰写程序与服务,一般消费者也可以在上面运行程序。 参与者:Google、微软、苹果、Yahoo!; 下层分级:云设备 Infrastructure as a Service (IaaS) 将基础设备(如IT系统、数据库等)集成起来, 像旅馆一样,分隔成不同的房间供企业租用。 参与者:IBM、戴尔、升阳、 惠普、亚马逊。

发展历史

       2007年10月,Google与IBM开始在美国大学校园,包括卡内基美隆大学、麻省理工学院、斯坦福大学、加州大学柏克莱分校及马里兰大学等,推广云计算的计划,这项计划希望能降低分布式计算技术在学术研究方面的成本,并为这些大学提供相关的软硬件设备及技术支持(包括数百台个人计算机及BladeCenter与System x服务器,这些计算平台将提供1600个处理器,支持包括Linux、Xen、Hadoop等开放源代码平台)。而学生则可以通过网络开发各项以大规模计算为基础的研究计划。

       2008年1月30日,Google宣布在台湾激活“云计算学术计划”,将与台湾台大、交大等学校合作,将这种先进的大规模、快速计算技术推广到校园。

       2008年7月29日,雅虎、惠普和英特尔宣布一项涵盖美国、德国和新加坡的联合研究计划,推出云计算研究测试床,推进云计算。该计划要与合作伙伴建立6个数据中心作为研究试验平台,每个数据中心配置1400个至4000个处理器。这些合作伙伴包括新加坡资讯通信发展管理局、德国卡尔斯鲁厄大学Steinbuch计算中心、美国伊利诺伊大学香宾分校、英特尔研究院、惠普实验室和雅虎”。

       2008年8月3日,美国专利商标局网站信息显示,戴尔正在申请“云计算”(Cloud Computing)商标,此举旨在加强对这一未来可能重塑技术架构的术语的控制权。戴尔在申请文件中称,云计算是“在数据中心和巨型规模的计算环境中,为他人提供计算机硬件定制制造”。

       2010年3月5日,Novell与云安全联盟(CSA)共同宣布一项供应商中立计划,名为“可信任云计算计划(Trusted Cloud Initiative)”。

产业链结构

芯片

       1、CPU

       (1)概念/定义

       CPU 由数百万个晶体管组成,可以有多个处理内核,通常被称为计算机的大脑。它是所有现代计算系统必不可少的组成部分,因为它执行计算机和操作系统所需的命令和流程。在确定程序运行速度方面(从网页浏览到构建电子表格),CPU 也很重要。

       (2)分类

       a)根据指令集分类:

       CISC(Complex Instruction Set Computer):复杂指令系统计算机,指令集较为复杂,一条指令可以完成多个操作,在CISC指令处理器中,程序的各条指令是按顺序串行执行的,每条指令中的各个操作也是按顺序串行执行的。顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度较慢,如x86架构的CPU。

       RISC(Reduced Instruction Set Computer):精简指令集计算机,是基于集成电路进行设计的一种芯片,对于指令的数目以及寻址的方式进行了改进,使得实现更加容易,提高了指令的并行执行程度和编译器效率,如ARM架构的CPU。

       b)根据处理器数量分类:

       单核CPU:只有一个处理器核心,不利于同时运行多个程序,执行起来速度慢,容易卡顿。

       多核CPU:有多个处理器核心,可以同时处理多个任务,执行起来速度快,更流畅,不容易卡顿。

       c)根据用途分类:

       桌面CPU:主要应用于个人计算机(台式机、笔记本电脑)。

       服务器CPU:主要用于服务器,对运算性能和稳定性要求更高。桌面和服务器CPU主要厂商为Intel和AMD

       移动端CPU:主要用于各种手机和平板中,对功耗、可靠性要求较高,主流的移动端CPU厂商主要有苹果、高通、联发科、华为和三星五家品牌。

       嵌入式CPU:主要用于汽车电子、工业控制与自动化、智能电网等领域,对功耗、稳定性有较高要求。

       2.BMC

       (1)概念/定义

       基板管理控制器(baseboard management controller)是服务器管理体系结构前端的一个微处理器。主要通过智能管理平台接口管理服务器系统,提供资产管理、健康状态检测、事件记录、远程控制和服务等。 

       它是独立于服务器系统之外的小型操作系统,集成在主板上,通过监控系统电源、温度等关键因素,确保系统处于正常运行状态,从而为平台管理提供更优化的支持。

       (2)功能

       设备信息管理:BMC具有记录服务器、机箱和主板等信息的功能。

       状态监控:BMC具有监控服务器主板温度、电压和开关机状态等功能。

       远程管理:BMC具有远程控制服务器主机开关机、重启等操作的功能。

       日志管理:BMC具有记录、读取并分级管理BMC内外部事件,服务器告警信息的功能。

       BIOS管理:BMC具有配置管理BIOS功能,修改BIOS配置的功能。

       告警设置:BMC具有通过 SNMP、邮件、指示灯等多种方式告警,将告警信息发送给管理员的功能。

       网络安全:BMC具有保证访问安全、身份认证和可信度量的功能。

       3.GPU

       (1)概念/定义

       英伟达的定义:

       GPU是NVIDIA在1999年发布的GeForce256显卡中首次提出的,最初主要关注图形渲染和图形处理。虽然该GPU不具备通用计算能力,但随后研究人员将其卓越的浮点性能应用于通用计算。GPU设计时将更多的晶体管用于数据处理,而不是数据缓存和流量控制,因此GPU专门用于高度并行计算,并且比CPU提供更高的指令吞吐量和内存带宽。 [13-14]

       英特尔的定义:

       GPU是由许多更小、更专业的内核组成的处理器。在多个内核之间划分并执行一项处理任务时,通过协同工作,这些内核可以提供强大的性能。GPU最初是作为专门用于加速特定3D 渲染任务的 ASIC 开发而成的。随着时间的推移,这些功能固定的引擎变得更加可编程化、更加灵活。尽管图形处理和当下视觉效果越来越真实的顶级游戏仍是GPU的主要功能,但同时,它也已经演化为用途更普遍的并行处理器,能够处理越来越多的应用程序。 

       TE智库的定义:

       GPU,即图形处理器,是一种专为个人电脑、工作站、游戏机和移动设备提供图像和图形处理能力的微处理器。最初GPU为了解决图形渲染问题而设计,随着技术的进步,GPU已逐渐发展为通用计算平台,可广泛应用于各种计算任务,如科学计算、机器学习人工智能等领域。

       (2)分类

       独立GPU(独立显卡):是一种与处理器分离的 GPU有自己的专用内存,不与 CPU 共享。由于独立显卡与处理器芯片分离,有自己的内存源和电源,因此其性能比集成显卡更高但会消耗更多功率并产生大量的热量。独立显卡最常见于台式机。笔记本电脑和小型 PC 也可以包含独立显卡。

       集成GPU(集成显卡):集成显卡是一种内置于处理器的 GPU,GPU 使用与 CPU 共享的系统内存。由于集成显卡内置于处理器中,通常功耗更低,产生的热量更少,从而延长了电池续航时间。集成显卡的处理器通常位于外形较小的系统中。 

       4.内存接口芯片

       (1)概念/定义

       澜起科技的定义:

       内存接口芯片是内存模组 (俗称内存条) 的核心器件,作为CPU存取内存数据的必由通路,其主要作用是提升内存数据访问的速度及稳定性,以匹配CPU日益提高的运行速度及性能。内存接口芯片需与各种内存颗粒及内存模组进行配套,并通过CPU厂商和内存厂商针对其功能和性能 (如稳定性、运行速度和功耗等) 的严格认证,才能进入大规模商用阶段。 [16]

       Rambus的定义:

       内存接口芯片是服务器内存模组的核心逻辑器件。随着数据量呈指数级增长以及AI/ML训练等高级工作负载的快速增长,需要在计算的各个方面不断创新。Rambus提供最先进的芯片组解决方案,例如Rambus DDR5内存接口芯片组,能够满足最新一代DDR5内存系统的高容量、高带宽性能要求,使服务器和客户端计算系统能够处理要求最苛刻的工作负载和应用程序。

       (2)分类

       寄存缓冲器(RCD):用来缓冲来自内存控制器的地址/命令/控制信号

       数据缓冲器(DB):用来缓冲来自内存控制器或内存颗粒的数据信号。

       其中仅采用 RCD 芯片对地址/命令/控制信号进行缓冲的内存模组通常称为RDIMM,而采用了RCD和DB套片对地址/命令/控制信号及数据信号进行缓冲的内存模组称为LRDIMM。

       5.光芯片

       (1)概念/定义

       英特尔的定义:

       光芯片是实现光电信号转换的基础元件,硅光子技术能够将光学器件的强大功能和芯片的可扩展性结合起来,以消除大规模云和企业数据中心的网络瓶颈,为以太网产品提供高带宽光学接口,生产的光芯片支持在较远的距离内更快的数据传输速度。

       (2)分类

       a)按光器件的分类:

       有源光芯片:有源光芯片按应用情况分为激光器光芯片和探测器光芯片,主要包括FP、DFB、EML、VCSEL、PIN以及APD芯片。

       无源光芯片:无源光芯片主要包括PLC和AWG芯片。

       b)按材料分类:

       InP系列、GaAs系列、Si/SiO2系列、SiP系列以及LiNbO3系列。

基础服务

       1.服务器

       (1)概念/定义

       服务器是计算机的一种,它比普通计算机运行更快、负载更高、价格更贵。服务器在网络中为其它客户机(如PC机、智能手机、ATM等终端甚至是火车系统等大型设备)提供计算或者应用服务。服务器具有高速的CPU运算能力、长时间的可靠运行、强大的I/O外部数据吞吐能力以及更好的扩展性。

       (2)分类

       a)按应用层次分类

       入门级服务器:小型企业、小部门需求。主要用于完成文件、打印服务等。

       工作组服务器:中型部门等、不复杂的业务,比如没有大型数据库需要管理。

       部门级服务器:能够承载中大型数据库、网站等,具有较高的可用性、可靠性、可扩展性、可管理性。

       企业级服务器:企业级服务器主要应用于需要处理大量数据,对处理速度和可靠性要求极高的大型企业和重要行业(如金融、交通、通信等行业)。

       b)按体系架构分类

       非X86服务器:是使用RISC(精简指令集)或EPIC处理器,并且主要采用UNIX和其它专用操作系统的服务器。

       X86服务器:又称CISC(复杂指令集)架构服务器,即通常所讲的PC服务器,它是基于PC机体系结构,使用Intel或其它兼容x86指令集的处理器芯片和Windows操作系统的服务器。

       c)按用途分类

       通用服务器:没有为某种服务专门设计的,可以提供各种服务功能的服务器。

       功能服务器(专用服务器):专门为某一种或某几种功能专门设计的服务器,可以实现“即插即用”,无需专业人员进行专门的软硬件配置。

       d)按照结构分类

       塔式服务器:外观上为一台体积比较大的PC,具备良好的扩展能力和散热性能,但存在机器重量相对沉重以及空间占用率高的缺点。

       机架式服务器:可以统一的安装在按照国际标准设计的机柜当中,相对塔式服务器节省了空间占用,但扩展能力和散热能力较差。

       刀片式服务器:是指在标准高度的机架式机箱内可插装多个卡式的服务器单元,为特殊应用行业和高密度计算环境专门设计。

       e)按照租用类型分类

       云服务器:云服务器是采用云计算技术,将多台(不设上限)服务器的资源合并在一起,形成一个集群,再将集群中的资源分发给不同用户。

       物理服务器:物理服务器指的是“独立服务器”,从业务角度来说,物理服务器可以自行的分配资源或者实现多种网络功能服务,适合一些业务较大的企业。

       站群服务器:站群服务器是单独为一个网站或者多个网站配置独立 IP 的一种服务器。一般都需要多 IP 搭配配置高的独立服务器。

       高防服务器:高防服务器是指独立单个防御 50 G 以上的服务器类型,可以为单个客户提供网络安全维护的服务器类型。

       2.路由器

       (1)概念/定义

       路由器(Router)是连接两个或多个网络的硬件设备,在网络间起网关的作用,是读取每一个数据包中的地址然后决定如何传送的专用智能性的网络设备。它能够理解不同的协议,例如某个局域网使用的以太网协议,因特网使用的TCP/IP协议。这样,路由器可以分析各种不同类型网络传来的数据包的目的地址,把非TCP/IP网络的地址转换成TCP/IP地址,或者反之;再根据选定的路由算法把各数据包按最佳路线传送到指定位置。所以路由器可以把非TCP/IP网络连接到因特网上。

       (2)分类

       a)按网络类型分类

       无线路由器:无线路由器使用以太网电缆连接到调制解调器。它通过将数据包从二进制代码转换为无线电信号来分发数据,然后用天线无线广播信号。无线路由器不建立 LAN;相反,它创建 WLAN(无线局域网),使用无线通信连接多个设备。

       有线路由器:与无线路由器一样,有线路由器也使用以太网电缆连接到调制解调器。然后它使用单独的电缆连接到网络内的一个或多个设备,创建一个LAN,并将该网络内的设备连接到互联网。

       b)按功能分类

       核心路由器:与家庭或小型企业 LAN 内使用的路由器不同,核心路由器由大型公司和企业使用,用于在其网络内传输大量的数据包。核心路由器在网络的“核心”运作,不与外部网络通信

       边缘路由器:核心路由器专门管理大规模网络内的数据流量,而边缘路由器则同时与核心路由器和外部网络进行通信。边缘路由器位于网络“边缘”,使用 BGP(边界网关协议)发送和接收来自其他 LAN 和 WAN 的数据。

       虚拟路由器:虚拟路由器是一种软件应用程序,其功能与标准硬件路由器相同。它可以使用虚拟路由器冗余协议 (VRRP) 来建立主要和备用的虚拟路由器(当主要路由器出现故障时使用)。 

       3.交换机

       (1)概念/定义

       交换机:交换是按照通信两端传输信息的需要,用人工或设备自动完成的方法,把要传输的信息送到符合要求的相应路由上的技术的统称。交换机根据工作位置的不同,可以分为广域网交换机和局域网交换机。广域的交换机就是一种在通信系统中完成信息交换功能的设备,它应用在数据链路层。交换机有多个端口,每个端口都具有桥接功能,可以连接一个局域网或一台高性能服务器或工作站。实际上,交换机有时被称为多端口网桥。

       (2)分类

       按照在网络中所处的位置和分工分类:核心交换机、汇聚交换机和接入交换机,此分类法最基本和常用。

       按网络覆盖程度分类:广域网和局域网交换机。广域网交换机主要是应用于电信城域网互联、互联网接入等领域的广域网中。

       按照不同端口结构分类:固定端口和模块化交换机。

       按照不同传输带宽和速率分类:百兆、千兆、万兆、十万兆交换机等。

       按照不同规模应用分类:企业级、校园级、部门级、工作组和桌机型交换机。

       按照是否支持网关功能分类:网管型和非网管型交换机。

       按照工作协议层分类:第二层交换机、第三层交换机和第四层交换机。二层交换机是对应于OSI/RM的第二协议层来定义的,三层交换机是对应于OSI/RM开放体系模型的第三层来定义的,四层交换机是依据TCP/UDP(第四层)应用端口号来定义的。

       4.光模块

       (1)概念/定义

光模块是进行光电和电光转换的光电子器件。光模块的发送端把电信号转换为光信号,接收端把光信号转换为电信号。光模块按照封装形式分类,常见的有SFP,SFP+,SFF,千兆以太网路界面转换器(GBIC)等。

       (2)分类

       a)按功能分类:光接收模块,光发送模块,光收发一体模块和光转发模块等。

       b)按模式分类:单模光模块和多模光模块。单模光模块的中心波长一般是1310nm、1550nm。多模光模块的中心波长一般是850nm。

       c)按封装分类:

       1×9封装—焊接型光模块,一般速度不高于千兆,多采用SC接口。

       SFF封装—焊接小封装光模块,一般速度不高于千兆,多采用LC接口。

       GBIC封装—热插拔千兆接口光模块,采用SC接口。

       SFP封装—热插拔小封装模块,目前最高数率可达4G,多采用LC接口。

       XENPAK封装—应用在万兆以太网,采用SC接口。

       XFP封装—10G光模块,可用在万兆以太网,SONET等多种系统,多采用LC接口。

       d)按速率分类:400GE光模块、100GE光模块、40GE光模块、25GE光模块、10GE光模块、GE光模块、FE光模块等。

       5.光纤

       (1)概念/定义

       光纤是光导纤维的简写,是一种由玻璃或塑料制成的纤维,可作为光传导工具。传输原理是“光的全反射”。微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤的一端的发射装置使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。

       (2)分类

       a)按照制造光纤所用的材料分类:石英系光纤、多组分玻璃光纤、塑料包层石英芯光纤、全塑料光纤和氟化物光纤。

       b)按光在光纤中的传输模式分类:单模光纤多模光纤。多模光纤可传多种模式的光。但其模间色散较大限制通讯距离。单模光纤只能传一种模式的光,适用于远程通讯。

       c)按折射率分布情况分类:阶跃型和渐变型光纤。阶跃折射率光纤的整个纤芯的折射率是一致的,光在纤芯内部的传播路径是一条折线。渐变折射率光纤中,从纤芯的轴心向外的折射逐渐降低,光在纤芯内部的传播路径类似一条正弦曲线。

       d)按光纤的工作波长分:短波长光纤、长波长光纤和超长波长光纤。短波长光纤是指0.8~0.9μm的光纤;长波长光纤是指1.0~1.7μm的光纤;而超长波长光纤则是指2μm以上的光纤。

IaaS

       (1)概念/定义

       微软的定义:

基础结构即服务 (IaaS) 是一种云计算服务类型,它按即用即付的方式按需提供必要的计算、存储和网络资源。通过将组织的基础结构迁移到 IaaS 解决方案,可帮助用户降低对本地数据中心的维护、节省硬件成本,同时获得实时业务见解。借助 IaaS 解决方案,用户可根据需要灵活地纵向扩展和缩减IT 资源。帮助用户快速预配新的应用程序,并提高底层基础结构的可靠性。 

       IBM的定义:

       IaaS是按需访问云托管的计算基础架构—服务器、存储容量和网络资源,客户可以与使用本地硬件大致相同的方式来部署、配置和使用。不同之处在于,云服务提供商在自己的数据中心托管、管理并维护硬件和计算资源。IaaS客户通过互联网连接使用硬件,根据订购或按使用量付费。

       亚马逊的定义:

       基础设施即服务 (IaaS) 是一种商业模式,通过互联网以即用即付的方式提供计算、存储和网络资源等 IT 基础设施。用户可以使用IaaS请求和配置运行应用程序和IT系统所需的资源。基础设施即服务能让用户灵活使用、经济高效地控制IT资源。 

       (2)常见应用场景

       应用程序的测试与开发:借助 IaaS,测试和开发环境的基础架构的设置速度比在本地快得多。

       大数据处理与分析:Iaas可提供充分的计算和存储资源,承担繁重工作负荷。

       数据备份和恢复:Iaas可为用户提供集中式的文件存储和备份服务。

       网站托管和部署:Iaas的基础设施能够为复杂、流量波动大的网站提供保障并提供实时安全监控服务。

PaaS

       (1)概念/定义

       微软的定义:

平台即服务 (PaaS) 是云中的完整开发和部署环境,用户可以使用其中资源交付内容,从基于云的简单应用到启用云的复杂企业应用程序皆可。以即用即付的方式从云服务提供商 处购买所需资源,并通过安全的 Internet 连接访问这些资源。在基础结构之上,它还包括中间件、开发工具、商业智能 (BI) 服务和数据库管理系统等。PaaS 旨在支持 Web 应用程序的完整生命周期:生成、测试、部署、管理和更新。

       IBM的定义:

       PaaS 提供用于开发、运行和管理应用的云平台。这种云服务提供商负责托管、管理和维护平台中的所有硬件和软件 — 服务器(用于开发、测试和部署)、操作系统 (OS) 软件、存储、网络、数据库、中间件、运行时、框架、开发工具 ,以及安全、操作系统和软件升级、备份等相关服务。

       亚马逊的定义:

       平台即服务消除了组织对底层基础设施(一般是硬件和操作系统)的管理需要,用户可以将更多精力放在应用程序的部署和管理上面。这有助于提高效率,无需操心资源购置、容量规划、软件维护、补丁安装或与应用程序运行有关的任何无差别的繁重工作。

       (2)常见应用场景

       API开发和管理:即使用PaaS来开发、运行、管理应用程序编程界面和微服务以及保障其安全,包括新API的创建以及端到端的API管理

       物联网(IoT):IoT预期将成为未来几年PaaS的广泛使用之处,它支持很多种应用程序环境、编程语言和不同IoT部署使用的工具。

       商业分析/情报:即通过PaaS提供的工具使企业可以分析数据来寻找商业机会和行为的模式,从而可以做出更好的决策,更准确的分析未来事件,例如市场对产品的需求。

SaaS

       (1)概念/定义

       微软的定义:

       软件即服务 (SaaS) 让用户能够通过Internet连接和使用基于云的应用程序。SaaS提供完整的软件解决方案,服务提供商负责管理硬件和软件,并根据适当的服务协议确保应用和数据的可用性和安全性。SaaS让组织能够通过最低前期成本的应用快速建成投产。 

       IBM的定义:

       SaaS(有时称为云应用服务) 是云托管的即用型应用软件。用户进行年度或月度支付后,可在Web浏览器、桌面客户端或移动应用中使用完整的应用。应用及用于交付应用的所有基础架构都由SaaS供应商进行托管和管理,包括服务器、存储、网络、中间件、应用软件和数据存储。 

       亚马逊的定义:

       软件即服务(SaaS)是一种基于云的软件模型,可通过Internet浏览器将应用程序交付给最终用户。SaaS供应商托管服务和应用程序,供客户按需访问。

       Oracle的定义:

       软件即服务 (SaaS) 指一种基于云技术的软件交付模式,具体而言,就是由云技术提供商开发和维护云技术应用软件,提供自动软件更新,并通过互联网以即用即付费的方式将软件提供给客户。其中,所有硬件何传统软件,包括中间件、应用软件和安全性等均由公有云技术提供商托管。 

       (2)常见应用场景

       电子邮件和办公自动化:SaaS可以提供基于云的电子邮件和办公自动化解决方案,例如 Outlook、Hotmail 或 Yahoo!Mail。

       客户关系管理(CRM):帮助企业管理客户关系、销售流程和营销活动,并提供实时数据分析和报告,例如Salesforce和HubSpot。这些应用程序可

       人力资源管理(HRM):帮助企业管理员工信息、薪资和福利、培训和绩效评估等方面的工作,例如Workday和BambooHR。

       财务管理和会计:帮助企业管理财务数据、发票和支付、报告和分析等方面的工作,例如QuickBooks和Xero。

       (3)SaaS、PaaS 与 IaaS的关系

       SaaS、PaaS 与 IaaS 并不互相排斥;大多数企业不止使用一种模式,如今许多大型企业通常将这三种模式与传统 IT 结合使用。

       客户选择的即服务解决方案首先取决于需要的功能及其可为员工带来的专业知识。例如,内部不具备远程服务器配置和操作相关 IT 专业知识的组织不适合使用 IaaS;没有开发团队的组织则不需要使用PaaS。

       但在某些情况下,三种“即服务”模式中的任何一种都会提供可行的解决方案。 这时,组织通常会比较这些可替代方案提供的管理便利性与其放弃的控制能力。

       例如,假设一个大型组织希望向销售团队交付一个客户关系管理 (CRM) 应用。它可以:

       选择一个 SaaS CRM 解决方案,将所有日常管理转移给第三方供应商,同时也放弃对所有功能部件和功能、数据存储、用户访问和安全性的控制。

       选择 PaaS 解决方案 并定制 CRM 应用。在这个案例中,企业将基础架构和应用开发资源管理任务转移给云服务提供商。 客户将保留对应用功能的完全控制,但也将承担管理应用和相关数据的责任。

       使用 IaaS 在云端构建后端 IT 基础架构,并使用它来构建自己的开发平台和应用。组织的 IT 团队将完全控制操作系统和服务器配置,但还要负责管理和维护它们,以及开发平台和平台上运行的应用。

云安全

       1.云安全概述

       IBM的定义:

       云安全是一组程序和技术的集合,旨在解决企业安全所面临的外部和内部威胁。企业在实施其数字化转型策略,并将各种云端工具和服务纳入企业基础架构中时,需要云安全保障业务顺利进行。 

       卡巴斯基的定义:

       云安全是一整套技术、协议和最佳做法的总称,旨在保护云计算环境、云中运行的应用程序和云中保存的数据。要保护云服务,首先应了解要保护的确切内容,以及必须管理的系统方面。

       2.为什么云安全很重要?

       如今的企业已经开始越来越多地过渡到基于云的环境和 IaaS、PaaS或 SaaS 计算模型。由于基础架构管理的动态特性(尤其是在扩展应用和服务方面),企业在为其部门提供充足资源时可能面临一些挑战。利用这些“即服务”模型,企业能够将许多费时的 IT 相关任务转移出去。

       随着企业持续迁移至云端,了解安全要求,确保数据保持安全就变得至关重要。虽然第三方云计算提供商可以处理此基础架构的管理工作,但数据资产安全和问责方面涉及的责任并不一定会随之发生转移。

       默认情况下,大多数云提供商会遵循最佳安全实践,并采取积极措施保护其服务器完好无损。但企业在保护云中运行的数据、应用程序和工作负载时,还需要作出自己的种种考虑。

       随着数字化态势持续发展,安全威胁所利用的技术也更加先进。由于企业在数据访问及移动方面缺乏总体可见性,这些威胁专门针对云计算提供商实施攻击。如果不采取积极措施改善云安全,企业可能在管理客户信息(无论信息存储在何处)时面临重大的治理与合规风险。 

       无论企业规模大小,云安全都是一个重要的讨论话题。云基础架构在所有行业以及多个垂直细分类别中几乎对现代计算的所有方面均可提供支持。 

       然而,成功部署云环境有赖于实施充足对策来防御如今的网络攻击。无论您的企业是在公有、私有还是混合云环境中运行,云安全解决方案和最佳实践都是确保业务连续性的必备项。

       3.存在的云安全挑战

       (1)缺乏可见性

       由于许多云服务是在企业网络之外通过第三方访问的,因此往往不容易了解数据的访问方式以及访问者详情。

       (2)多租户

       公有云在同一环境中运行多个客户基础架构。因此,当恶意攻击者在攻击其他企业时,有可能连带损害到您的托管服务。

       (3)访问管理和影子IT

       尽管企业也许可以成功管理和限制本地系统中的访问点,但在云环境中可能很难执行这些相同级别的限制。如果企业没有部署自带设备 (BYOD) 策略,并允许从任何设备或地理位置对云服务进行未经筛查的访问,这就会比较危险。

       (4)合规性

       对于使用公有云或混合云部署的企业来说,合规管理常常是造成困惑的一大来源。数据隐私和安全性的总体问责仍然存在于企业自身,而严重依赖第三方解决方案来管理此组件可能会导致成本高昂的合规问题。

       (5)配置错误

       错误配置的资产占到 2019 年违规记录的 86%,因此无意中产生的内部威胁成为云计算环境的一个严重问题。错误配置包括就地保留缺省管理密码,或没有创建合适的隐私保护设置。  

       4.云安全解决方案分类

       (1)身份和访问管理 (IAM)

       身份和访问管理 (IAM) 方案中的这些工具和服务可支持企业部署各种依据策略驱动的执行协议,确保所有用户既可访问本地,亦可访问基于云的服务。IAM 的核心功能就是为所有用户创建数字身份,以便在所有数据交互过程中对其进行必要的主动监控和限制。

       (2)数据丢失预防 (DLP)

       数据丢失预防 (DLP) 服务提供了一套工具和服务,旨在确保受管制云数据的安全。DLP 解决方案综合使用补救警报、数据加密和其他预防措施来保护所有已存储的数据,无论这些数据是处于静态,还是处于移动状态。

       (3)信息安全和事件管理 (SIEM)

       信息安全和事件管理 (SIEM) 提供全面的安全统筹解决方案,可在基于云的环境中自动执行威胁监视、检测和响应。SIEM 使用人工智能 (AI) 驱动的技术,将多个平台和数字资产中的日志数据联系起来,确保 IT 团队能够成功应用网络安全协议,同时快速应对任何潜在的威胁。

       (4)业务连续性和灾难恢复

       无论企业为其本地和基于云的基础架构实施了何种预防措施,数据泄露和破坏性停运或中断仍有可能发生。企业必须能够尽快对新发现的漏洞或重要系统宕机等做出快速反应。灾难恢复解决方案是云安全的基本要素,可为企业提供所需的工具、服务和协议,以加快恢复丢失的数据和回归正常业务运营。

       5.如何保障云安全

       保障云安全的方法多种多样,每个企业采取的对策各有不同,这主要取决于多个变量。不过,美国国家标准技术研究院(NIST) 提出了一些最佳实践做法,您可以遵循这些最佳实践规范,建立一个安全的、可持续发展的云计算框架。

       NIST 制定了必要的步骤,供每个企业对其安全准备情况进行自我评估,并为其系统部署充足的预防和恢复安全措施。这些原则依据 NIST 的网络安全框架五大支柱而设立,即识别、保护、检测、响应和恢复。

       云安全领域中另一种支持执行 NIST 网络安全框架的新兴技术是云安全态势管理 (CSPM)。CSPM 解决方案旨在解决许多云环境中的一个常见缺陷,即错误配置。

       企业甚至云提供商对云基础架构的错误配置可能会导致多个漏洞,从而显著增加企业的受攻击面。CSPM 可协助统筹和部署云安全的核心组件,从而解决这些问题。其中包括身份和访问管理 (IAM)、合规管理、流量监控、威胁监测、风险缓解和数字资产管理。 

       6.相关解决方案

       云安全解决方案:将安全性融入企业云之旅的每个阶段。

       云安全服务:通过云安全服务,保护企业混合云环境。

       云安全策略服务:与值得信赖的顾问合作,引导企业实施云安全计划。

       云身份和访问管理 (IAM) :融入云 IAM 方案,为企业用户和员工实现安全顺畅、没有阻碍的访问。

       零信任安全策略:通过部署零信任策略的现代化安全方法,推动企业云转型。

  • 快速搜索
  • 热门词条

粤公网安备 44030502002758号