侵权投诉
首页 / 百科 / 纳米技术
纳米技术

纳米技术

分类: 锂电
属性: 技术
最后修改时间: 2015年06月13日
本词条对我有帮助0
纳米技术(nanotechnology)是用单个原子、分子制造物质的科学技术,研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米科学技术是以许多现代先进科学技术为基础的科学技术,它是现代科学(混沌物理、量子力学、介观物理、分子生物学)和现代技术(计算机技术、微电子和扫描隧道显微镜技术、核分析技术)结合的产物,纳米科学技术又将引发一系列新的科学技术,例如:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等。

1理论含义

  纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在1纳米至100纳米范围内材料的性质和应用的一种技术。1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。

  从迄今为止的研究来看,关于纳米技术分为三种概念:

  第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。

  第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的“加工”来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。

  第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容。

2主要内容

  纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:

  纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等 。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。

  1993年,第一届国际纳米技术大会(INTC)在美国召开,将纳米技术划分为6大分支:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学,促进了纳米技术的发展。由于该技术的特殊性,神奇性和广泛性,吸引了世界各国的许多优秀科学家纷纷为之努力研究。 纳米技术一般指纳米级(0.1一100nm)的材料、设计、制造,测量、控制和产品的技术。纳米技术主要包括:纳米级测量技术:纳米级表层物理力学性能的检测技术:纳米级加工技术;纳米粒子的制备技术;纳米材料;纳米生物学技术;纳米组装技术等。

  纳米技术包含下列四个主要方面:

  1、纳米材料:当物质到纳米尺度以后,大约是在0.1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。 这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。

  如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。

  过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,像铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。

  为什么磁畴变成单磁畴,磁性要比原来提高1000倍呢?这是因为,磁畴中的单个原子排列的并不是很规则,而单原子中间是一个原子核,外则是电子绕其旋转的电子,这是形成磁性的原因。但是,变成单磁畴后,单个原子排列的很规则,对外显示了强大磁性。

  这一特性,主要用于制造微特电机。如果将技术发展到一定的时候,用于制造磁悬浮,可以制造出速度更快、更稳定、更节约能源的高速度列车。

  2、纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统(MEMS),用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等.用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。在研究方面还要相应地检测准原子尺度的微变形和微摩擦等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。

  理论上讲:可以使微电机和检测技术达到纳米数量级。

  3、纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。有了纳米技术,还可用自组装方法在细胞内放入零件或组件使构成新的材料。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。

  纳米生物学发展到一定技术时,可以用纳米材料制成具有识别能力的纳米生物细胞,并可以吸收癌细胞的生物医药,注入人体内,可以用于定向杀癌细胞。(上面是老钱加注)

  4、纳米电子学:包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷,更小,是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。 纳米技术是建设者的最后疆界,它的影响将是巨大的。

3历史沿革

  纳米技术的灵感,来自于已故物理学家理查德·费曼1959年所作的一次题为《在底部还有很大空间》的演讲。这位当时在加州理工大学任教的教授向同事们提出了一个新的想法。从石器时代开始,人类从磨尖箭头到光刻芯片的所有技术,都与一次性地削去或者融合数以亿计的原子以便把物质做成有用的形态有关。费曼质问道,为什么我们不可以从另外一个角度出发,从单个的分子甚至原子开始进行组装,以达到我们的要求?他说:“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”

  70年代,科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家谷口纪男(Norio Taniguchi)最早使用纳米技术一词描述精密机械加工;

  1981年,科学家发明研究纳米的重要工具——扫描隧道显微镜,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用;

  IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排,纳米技术取得一项关键突破。他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自的位置,组成了IBM三个字母。这证明费曼是正确的,二个字母加起来还没有3个纳米长。不久,科学家不仅能够操纵单个的原子,而且还能够“喷涂原子”。使用分子束外延长生长技术,科学家们学会了制造极薄的特殊晶体薄膜的方法,每次只造出一层分子。现代制造计算机硬盘读写头使用的就是这项技术。  著名物理学家、诺贝尔奖获得者理查德· 费曼预言,人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想。

  1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生;

  1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点,诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等;

  1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文、1990年美国国际商用机器公司在镍表面用35个氙原子排出“IBM”之后,中国科学院北京真空物理实验室自如地操纵原子成功写出“ 中国”二字,标志着中国开始在国际纳米科技领域占有一席之地;

  1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在2017年后研制成功速度和存贮容量比现在提高成千上万倍的量子计算机;

  1999年,巴西和美国科学家在进行纳米碳管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的秤,打破了美国和巴西科学家联合创造的纪录;

  到1999年,纳米技术逐步走向市场,全年基于纳米产品的营业额达到500亿美元;

  2001年,一些国家纷纷制定相关战略或者计划,投入巨资抢占纳米技术战略高地。日本设立纳米材料研究中心,把纳米技术列入新5年科技基本计划的研发重点;德国专门建立纳米技术研究网;美国将纳米计划视为下一次工业革命的核心,美国政府部门将纳米科技基础研究方面的投资从1997年的1.16亿美元增加到2001年的4.97亿美元。中国也将纳米科技列为中国的“973计划”进行大力的发展与其相关产业的大力扶持。

4应用领域

  当前纳米技术的研究和应用主要在材料和制备、微电子和计算机技术、医学与健康、航天和航空、环境和能源、生物技术和农产品等方面。用纳米材料制作的器材重量更轻、硬度更强、寿命更长、维修费更低、设计更方便。利用纳米材料还可以制作出特定性质的材料或自然界不存在的材料,制作出生物材料和仿生材料。

  1、纳米是一种几何尺寸的度量单位,1纳米=百万分之一毫米。

  2、纳米技术带动了技术革命。

  3、利用纳米技术制作的药物可以阻断毛细血管,“饿死”癌细胞。

  4、如果在卫星上用纳米集成器件,卫星将更小,更容易发射。

  5、纳米技术是多科学综合,有些目标需要长时间的努力才会实现。

  6、纳米技术和信息科学技术、生命科学技术是当前的科学发展主流,它们的发展将使人类社会、生存环境和科学技术本身变得更美好。

  7、纳米技术可以观察病人身体中的癌细胞病变及情况,可让医生对症下药。

  测量技术

  纳米级测量技术包括:纳米级精度的尺寸和位移的测量,纳米级表面形貌的测量。纳米级测量技术主要有两个发展方向。

  一是光干涉测量技术,它是利用光的干涉条纹来提高测量的分辨率,其测量方法有:双频激光干涉测量法、光外差干涉测量法、X射线干涉测量法、F一P标准工具测量法等,可用于长度和位移的精确测量,也可用于表面显微形貌的测量。

  二是扫描探针显微测量技术(STM),其基本原理是基于量子力学的隧道效应,它的原理是用极尖的探针(或类似的方法)对被测表面进行扫描(探针和被测表面实际并不接触),借助纳米级的三维位移定位控制系统测出该表面的三维微观立体形貌。主要用于测量表面的微观形貌和尺寸。

  用这原理的测量方法有:扫描隧道显微镜(STM)、原子显微镜(AFM)等。

  电阻值测量

  在敏感伏安特性和电阻值的测量中,测试装置通常由两部分组成:电流源以及电压测试装置。研究人员使用锁定放大器测试法时一般选择传统电源,因为精密交流电流源在这里无法简单使用。

  锁定放大器[2]测试法。锁定放大器可以用来测量微小交流信号,有时可达纳伏[3]级。通过使用这种装置,即使噪声信号大于有效信号也可进行精确测量。锁定放大器使用一种叫做相敏检波的技术来选出具有某一特定频率的信号。其他频率的噪声信号大部分都被忽略。因为锁定放大器只会处理测试频率上或与之接近的交流信号,热电效应[4](直流与交流)的影响也都会被减弱。

  图1是一个锁定放大器在低功率条件下检测元件电压的简化框图。通过在测试对象和串联电阻RREF上施加电压(A sin[2π fo t])来获得一个电流。通常选择的电阻RREF都会比测试对象阻值大许多倍,这样这种电路可以看作是驱动测试对象的近似电流源。

图1 锁定放大器测量设置的简化框图

  放大后的测试对象电压会分别与外加源同频同相位的正交参考信号相乘,然后再分别通过低通滤波器。这其中的乘法器和滤波器可通过模拟电路来实现,但如今更普遍的方法是在锁定放大器内部进行数字化,然后采用数字方法实现。

  在频率点fo,低通滤波器[5]的输出是电压的实部(同相位)和虚部(90度相位)。研究人员基于预设的电流和测得的电压值来分别计算测试对象的阻值。

  使用锁定放大器[6]的研究人员通常使仪器工作在相对较低的频率上,比如50Hz以下。选择低频有许多原因:(1)得到远低于测试对象和互联的衰减频率以进行精确测量;(2)避免电源频率处的噪声;和(3)获得远低于电磁干扰滤波器的截止频率,该滤波器用于防止环境噪声影响测试对象。

  直流反转测量法

  锁定放大器的一个替代方法是在电流信号上使用直流极性反转的方法来消除噪声。这是消除偏移和低频噪声的一种完善技术。当今的直流源和纳伏表在降低噪声源的影响和缩短实现低噪声测量的时间方面都要显著优于锁定放大器。

  如图2所示,首先简单的为测试对象提供电流并测量其电压值,然后反转电流并再次测量电压值。将两次测量的差值除以二就得到测试对象在外加电流下的电压响应。重复这一过程并使用平均法来降低噪声带宽,并因此降低噪声。有些研究人员称这一方法为Delta测量法。

图2 使用四线法的直流反转测量电路

  直流反转监测法

  直流反转方法则使用一个可反转极性的直流源,测试对象的响应则通过一个纳伏表来测量。

  过去,直流反转监测法在大部分测量仪器上都需要手动操作,这将反转速度限制在低于1Hz。如今的仪器则使这种技术自动化并提高了反转速度。反转速度设定了主导噪声的频率。更高的反转速度去除了低频噪声,并使热漂移有所改善,这是因为这些噪声源在高频下具有更低的功率。

图3在直流反转测量(Delta法)中测试信号和热电误差电压

  简单说,Delta法包括反转电源极性以及使用三次测量电压值的移动平均来计算电阻(图3)。三次测量为:

  VM1 = VDUT + VEMF

  VM2 = –VDUT + VEMF + δV

  VM3 = VDUT + VEMF + 2δV,

  其中VM1, VM2 和 VM3为电压测量

  VDUT:因外加电流而在测试对象上产生的电压降

  VEMF:在测定VM1时,恒定热电动势电压偏置

  δV:线性变化的热电动势

  使用三个电压测量进行数学计算就可能去除热电动势电压偏置项(VEMF)和热电动势电压变化项(δV)。首先,求出前两次电压测量差的一半,并称其为VA:

  VA = (VM1 – VM2)/2 = [(VDUT + VEMF) – (–VDUT + VEMF + δV)]/2 = VDUT – δ/2

  同样地,求出第二次(VM2)和第三次(VM3)电压测量差的一半,并将此项称为VB:

  VB = (VM2 – VM3)/2 = [(VDUT + VEMF + 2δV) – (–VDUT + VEMF + δV)]/2 = VDUT + δV/2

  这些结果都可以抵消偏置量VEMF,但仍有漂移误差δV。VA和VB的平均值就是简单的VDUT。

  Vfinal = (VA + VB)/2 = (VM1 – 2VM2 + VM3)/4 = VDUT

  对连续读数取平均值来减少测量带宽,达到所需的噪音等级。

  经检验,前面的数学计算实际上是VM读数序列以+1, –1, +1等为权重的增值。这与锁定放大器乘以所需的正弦激励信号是类似的。本文尾注中介绍的商用电流源及纳伏表可以实现整个过程的自动化,计算电阻值并在仪器上显示出来。

  低电阻被测器件的测量

  同样的技术,改善测量仪器的硬件。正如我们所看到的,锁定放大器法和直流反转法都是交流测量方法,这两种方法都可排除直流噪声和高频噪声。然而,纳伏表及电流源组合可以在设备的整个电阻测量内提供超级的测量能力,如下面章节所解释的一样。

  图4所示为典型的低电阻测量应用。仪器电压噪声通常是低电阻测量中的主导噪声,但当电阻阻值低于一定程度后,共模噪声也会成为一个问题。

图4典型低电阻测量框图

  图4所示的4个导线电阻在0.1Ω至100Ω变化,具体变化取决于实验。重视他们的原因是因为对于低电阻设备,相对于测试对象,铜连接的导线阻抗也会变得很大。此外,许多在低温下进行的低电阻实验,在四个设备连接线上都有射频滤波器(如Pi滤波器),电阻的典型值也是100Ω。

  不考虑进行交流测量的仪器,测试电流流经电源引线,从而在接地点到测试对象的连接中产生电压降,如图节点A。因此,A点电压会以ITEST × RLEAD为幅度上下波动,而VMEASURE输入检测一个更小的交流电压ITEST × RDUT。

  在这一类测量电路的连接中,共模抑制比(CMRR)是需要注意的一个问题。共模抑制比规定仪器在本地震荡测量时抗扰动能力的强弱。典型锁定放大器的共模抑制比一般为100dB(105的系数)。在实际测量中,更可能会降在85-90dB。相比之下,纳伏表的共模抑制比在140dB。与按Delta模式工作的现代电流源相结合后,实际测量中可能达到高于200dB的共模抑制比。

图5 用锁定放大器制作一个“电流源”

  大电阻的测量

  现代,大于10 kΩ的被测电阻是对电流噪声和输入负载误差方面的挑战。因电压噪声与测试对象的电阻成比例,电流噪声就会非常明显。在锁定放大器法和直流反转系统中,电流噪声来自于测量电路,在流经测试对象和/或引线电阻时会产生额外的直流和交流电压。

  对于这两种测试系统,噪声具有相近的幅值。对于反转电流源及纳伏表的组合,在80fA/噪声下电流噪声的典型值是直流50pA。对于锁定放大器法在180fA/噪声下,电流噪声为直流50pA。虽然50pA直流无法干扰到交流测量,但它会增加测试对象的功率,因此必须计入测量系统施加在测试对象上的总功率中去。在直流反转法中这就是一个很小的问题了,因为可编程电流源可以很容易的产生一个直流分量来抵消纳伏表的直流量。锁定放大器则没有这个能力。

  测量高阻测试对象的第二个限制是电压测试电路的输入阻抗,它会带来负载误差。假设需要对一个10MΩ阻值的测试对象进行测量。典型的锁定放大器电路有一个近似的输入阻抗—10MΩ。这就意味着本应流经测试对象的电流将会有一半流入仪器的输入,造成测量电压50%的误差。即便使用精确的差分法,使用锁定放大器测量超过1MΩ阻值的被测器件时,要达到1%的误差精度也是不现实的。

  中等电阻的测量

  传统上,锁定放大器用来测量100mΩ至1MΩ的电阻,超出这个范围的话限制就会比较明显。即使测试电阻在这个范围内,使用直流反转法的新仪器也能提供优势。举例来说,锁定放大器比直流反转系统具有两倍(或更高)的白噪声,1/f电压噪声更是后者的10倍以上(图7所示)。比如,工作在13Hz(锁定放大器的一个典型频率)时,典型的直流反转系统的电压噪声比锁定放大器低7倍,这就导致所需功率低50倍。

检测技术

  各种材料的极薄表层的物理、化学、力学性能和材料内部的性能常有很大差异。而正是这极薄的表面材料在康擦磨损、物理、化学、机械行为中起着主导作用。反映在现在“信

  原子力显微镜——纳米测量技术

  原子力显微镜——纳米测量技术

  息时代”的新型“智能型”材料的出现,如计算机磁盘、光盘等,要求表层小但有优良的电、磁、光性能,而且要求有良好的润滑性、摩擦小、耐磨损、抗化学腐蚀、组织稳定和优良的力学性能。因此,世界各国都非常重视材料的纳米级表层的物理、化学、机械性能及其检测方法的研究。纳米级表层物理力学性能的检测方法主要是表层微力学探针检侧法,它是用纳米压痕的原理检测其力学性能的.其基本原理是利用金刚石针尖用极小的力在试件表面压出纳米级或微米级压痕,根据压痕的大小测出试件表层的显徽力学性能,即连续记录探针针尖加载逐步压人和卸载逐步退出试件表层的全过程的压痕深度变化。因其中包含试件表层的弹性交形,塑性变形、姗变、变形速率等多种信息,通过这些信息测出表层材料的多项力学性能。

加工技术

  纳米级加工的含意是达到纳米级精度的加工技术。

  由于原子间的距离为0.1一0.3nm,纳米加工的实质就是要切断原子间的结合,实现原子或分子的去除,切断原子间结合所需要的能量,必然要求超过该物质的原子间结合能,即所播的能量密度是很大的。用传统的切削、磨削加工方法进行纳米级加工就相当困难了。截至2008年纳米加工有了很大的突破,如电子束光刻(UGA技术)加工超大规模集成电路时,可实现0.1μm线宽的加工:离子刻蚀可实现微米级和纳米级表层材料的去除:扫描隧道显微技术可实现单个原子的去除、扭迁、增添和原子的重组。

粒子制备

  纳米粒子的制备方法很多,可分为物理方法和化学方法。

  真空冷授法:用真空蒸发、加热、高频感应等方法使原料气化或形成等粒子体,然后骤冷。其特点纯度高、结晶组织好、位度可控,但技术设备要求高。

  物理粉碎法:透过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产晶纯度低,顺粒分布不均匀。

  机械球磨法:采用球磨方法,控制适当的条件得到纯元素、合金或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。

  气相沉积法:利用金属化合物蒸汽的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。

  沉淀法:把沉淀剂加人到盐溶液中反应后,将沉淀热处理得到纳米材料.其特点简单易行,但纯度低,颗粒半径大,适合制备载化物。

  水热合成法:高温高压下在水溶液或蒸汽等流体中合成,再经分离和热处理得纳米粒子。其特点纯度高,分散性好、拉度易控制。

  溶胶凝胶法:金属化合物经溶液、溶胶、凝胶而固化,再经低沮热处理而生成纳米粒子。其特点反应物种多,产物颗粒均一,过程易控制,适于氧化物和11一VI族化合物的制备。

  徽乳液法:两:互不相溶的溶剂在表面活性剂的作用下形成乳液,在徽泡中经成核,聚结、团聚、热处理后得纳米粒子。其特点粒子的单分散和接口性好,11一VI族半导体纳米粒子多用此法制备。

材料合成

  自1991年Gleiter等人率先制得纳米材料以来,经过10年的发展纳米材料有了长足的进步。如今纳米材料种类较多,按其材质分有:金属材料、纳米陶瓷材料、纳米半导体材料、纳米复合材料、纳米聚合材料等等。纳米材料是超徽粒材料,被称为“21世纪新材料”,具有许多特异性能。

  例如用纳米级金属微粉烧结成的材料,强度和硬度大大高于原来的金属,纳米金属居然由导电体变成绝缘体。一般的陶瓷强度低并且很脆。但纳米级微粉烧结成的陶瓷不但强度高并且有良好的韧性。纳米材料的熔点会随超细粉的直径的减小而降低。例如金的熔点为1064℃,但10nm的金粉熔点降低到940℃,snm的金粉熔点降低到830℃,因而烧结温度可以大大降低。纳米陶瓷的烧结温度大大低于原来的陶瓷。纳米级的催化剂加入汽油中。可提高内燃机的效率。

  加入固体燃料可使火箭的速度加快。药物制成纳米微粉。可以注射到血管内顺利进入微血管。

疾病诊断

  当前常规的成像技术只能检测到癌症在组织上造成的可见的变化,而这个时候已经有数千的癌细胞生成并且可能会转移。而且,即使是已经可以看到肿瘤了,由于肿瘤本身的类别(恶性还是良性)和特征,要确定有效的治疗方法也还必须通过活组织检查。如果对癌性细胞或者癌变前细胞以某种方式进行标记,使用传统设备即可检测出来则更有利于癌症的诊断。

  要实现这一目标有两个必要条件:某技术能够特定识别癌性细胞且能够让被识别的癌性细胞可见。纳米技术能够满足这两点。例如,在金属氧化物表面涂覆可特异识别癌性细胞表面超表达的受体的抗体。由于金属氧化物在核磁共振成像(MRI)或计算机断层扫描(CT)下发出高对比度信号,因此一旦进入体内后,这些金属氧化物纳米颗粒表面的抗体选择性地与癌性细胞结合,使检测仪器可以有效地识别出癌性细胞。同样地,金纳米粒也可以用于增强在内窥镜技术中的光散射。纳米技术能够将识别癌症类别及不同发展阶段的分子标记可视化,让医生能够通过传统的成像技术看到原本检测不到的细胞和分子。

  在人类与癌症的斗争中,有一半的胜利是得益于早期的检测。纳米技术使得癌症的诊断更早更准确,并可用于治疗监测。纳米技术也可以增强甚至完全变革对组织和体液中生物标志物的筛查。癌症与癌症之间,以及癌细胞与正常细胞之间由于各种分子在表达和分布上的差异而各不相同。随着治疗技术的进步,对癌症的多个生物标志物进行同时检测是确定治疗方案时所必须的。纳米颗粒——例如能够根据它们本身大小发出不同颜色光的量子点——可以实现同时检测多种标记物的目的。包被有抗体的量子点发出的激发光信号可用于筛查某些类型的癌症。不同颜色的量子点可与各种癌症生物标记物抗体结合,方便肿瘤学家通过所看到的光谱区分癌细胞与健康细胞。

组装技术

  由于在纳米尺度下刻蚀技术已达到极限,组装技术将成为纳米科技的重要手段,受到人们很大的重视。

  纳米组装技术就是通过机械、物理、化学或生物的方法,把原子、分子或者分子聚集体进行组装,形成有功能的结构单元。组装技术包括分子有序组装技术,扫描探针原子、分子搬迁技术以及生物组装技术。分子有序组装是通过分子之间的物理或化学相互作用,形成有序的二维或三维分子体系。现在,分子有序组装技术及其应用研究方面取得的最新进展主要是LB膜研究及有关特性的发现。生物大分子走向识别组装。蛋白质、核酸等生物活性大分子的组装要求商密度定取向,这对于制备高性能生物微感膜、发展生物分子器件,以及研究生物大分子之间相互作用是十分重要的。在进行lgG归生物大分子的组装过程中,首次利用抗体活性片断的识别功能进行活性生物大分子的组装。这一重要的进展使得生物分子的定向组装产生了新的突破。

  除以上几种组装外,在长链聚合物分子上的有序组装、桥连自组装技术、有序分子薄膜的应用研究等技术也有进展。采用纳米加工技术还可以对材料进行原子量级加工,使加工技术进人一个更加徽细的深度。纳米结构自组装技术的发展,将会使纳米机械、纳米机电系统和纳米生物学产生突破性的飞跃。

  中国在纳米领域的科学发现和产业化研究有一定的优势。现代同美、日、德等国位于国际第一梯队的前列。虽然现代中国己经建立了一定数量的纳米材料生产基地,纳米技术的开发应用也已经兴起,并初步实现了产业化。纳米要实现大规模、低成本的产业化生产,还有许多的工作要做,只有依赖大量的资金和高科技投人才能换取高额的利润回报。

生物技术

  纳米生物学是以纳米尺度研究细胞内部各种细胞器的结构和功能。研究细胞内部,细胞内外之间以及整个生物体的物质、能量和信息交换。纳米生物学的研究集中在下列方面。

  DNA研究在形貌观察、特性研究和基因改造三个方面有不少进展。

  脑功能的研究

  工作目标是弄清人类的记忆、思维,语言和学习这些高级神经功能和人脑的信息处理功能。

  仿生学的研究

  这是纳米生物学的热门研究内容。现在取得不少成果。是纳米技术中有希望获得突破性巨大成果的部分。

  世界上最小的马达是一种生物马达—鞭毛马达。能象螺旋桨那样旋转驱动鞭毛旋转。该马达通常由10种以上的蛋白质群体组成,其构造如同人工马达。由相当的定子、转子、轴承、万向接头等组成。它的直径只有3onm,转速可以高达15r/min,可在1μs内进行右转或左转的相互切换。利用外部电场可实现加速或减速。转动的动力源,是细菌内支撑马达的薄膜内外的氮氧离子浓度差。实验证明。细菌体内外的电位差也可驱动鞭毛马达。现代人们正在探索设计一种能用电位差驭动的人工鞭毛马达驱动器。

  日本三菱公司已开发出一种能模拟人眼处理视觉形象功能的视网膜芯片。该芯片以砷化稼半导体作为片基。每个芯片内含4096个传感元。可望进一步用于机器人

  有人提出制作类似环和杆那样的分子机械。把它们装配起来构成计算机的线路单元,单元尺寸仅Inm,可组装成超小型计算机,仅有数微米大小,就能达到现代常用计算机的同等性能。

  在纳米结构自组装复杂徽型机电系统制造中,很大的难题是系统中各部件的组装。系统愈先进、愈复杂,组装的问题也愈难解决。自然界各种生物、生物体内的蛋白质、DNA、细胞等都是极为复杂的结构。它们的生成、组装都是自动进行的。如能了解并控制生物大分子的自组装原理,人类对自然界的认识和改造必然会上升到一个全新的更高的水平。

5衍生产品

机器人

  纳米机器人是根据分子水平的生物学原理为设计原型,设计制造可对纳米空间进行操作的“功能分子器件”,也称分子机器人;而纳米机器人的研发已成为当今科技的前沿热点。

  2005年,不少国家纷纷制定相关战略或者计划,投入巨资抢占纳米机器人这种新科技的战略高地。《机器人时代》月刊日前指出:纳米机器人潜在用途十分广泛,其中特别重要的就是应用于医疗和军事领域。

  每一种新科技的出现,似乎都包涵着无限可能。用不了多久,个头只有分子大小的神奇纳米机器人将源源不断地进入人类的日常生活。中国著名学者周海中教授在1990年发表的《论机器人》一文中就预言:到21世纪中叶,纳米机器人将彻底改变人类的劳动和生活方式。

雨衣伞

  纳米雨衣伞是雨伞与雨衣的结合体,纳米雨伞收伞有三折伞和直杆伞的收伞形态(简单说,收伞时有长短两种选择)。纳米雨衣可由纳米雨伞转变而成,纳米雨衣又不同于一般的雨衣,因为纳米雨衣可以保证从头到脚绝对不湿。因为纳米材料,所以这雨伞可以一甩即干,雨伞转变为雨衣后,这雨衣也只需穿着时轻轻一跳也即可全干。[1]

防水材料

  2014年8月4日,澳大利亚运用新发明的布料,制成一款具有开创性的T恤衫,不管人们怎样尝试着浸湿它,此T恤都能保持良好的防水性能。[2]

  这件叫做“骑士”(The Cavalier)的白色T恤是百分之百棉质的。虽然表面看起来平淡无奇,但是其布料运用“疏水”纳米技术应用编织而成,使得这件T恤能够有效防止大部分液体和污渍的浸入。这种T恤可以用机器清洗,其防水功能最多可承受80次清洗。它的布料有天然自净功能,任何附着在上的污渍都能用水擦洗或冲干净。[2]

  和其他含有化学物质的防水应用不同,T恤仿照的是荷叶的自然疏水特点。此布料的发明对于餐馆和咖啡厅来说可能具有革命性的影响。此外,这种布料还可以运用在医疗行业或医院等地。[2]

6潜在危害

  和生物技术一样,纳米科技也有很多环境和安全问题(比如尺寸小是否会避开生物的自然防御系统,还有是否能生物降解、毒性副作用如何等等)。

社会危害

  纳米颗粒的危害

  纳米材料(包含有纳米颗粒的材料)本身的存在并不是一种危害。只有它的一些方面具有危害性,特别是他们的移动性和增强的反应性。只有某些纳米粒子的某些方面对生物或环境有害,我们才面临一个真的危害。

  要讨论纳米材料对健康和环境的影响,我们必须区分两类纳米结构:

  纳米尺寸的粒子被组装在一个基体、材料或器件上的纳米合成物、纳米表面结构或纳米组份(电子,光学传感器等),又称为固定纳米粒子。

  “自由”纳米粒子,不管在生产的某些步骤中存还是直接使用单独的纳米粒子。

  这些自由纳米粒子可能是纳米尺寸的单元素,化合物,或是复杂的混合物,比如在一种元素上镀上另外一张物质的“镀膜”纳米粒子或叫做“核壳”纳米粒子。

  现代,公认的观点是,虽然我们需要关注有固定纳米粒子的材料,自由纳米粒子是最紧迫关心的。

  因为,纳米粒子同它们日常的对应物实在是区别太大了,它们的有害效应不能从已知毒性推演而来。这样讨论自由纳米粒子的健康和环境影响具有很重要的意义。

  更加复杂的是,当我们讨论纳米粒子的时候,我们必须知道含有的纳米粒子的粉末或液体几乎从来不会单分散化,而是具有一定范围内许多不同尺寸。这会使实验分析更加复杂,因为大的纳米粒子可能和小的有不同的性质。而且,纳米粒子具有聚合的趋势,而聚合的纳米粒子具有同单个纳米粒子不同的行为。

健康问题

  纳米颗粒进入人体有四种途径:吸入,吞咽,从皮肤吸收或在医疗过程中被有意的注入(或由植入体释放)。一旦进入人体,它们具有高度的可移动性。在一些个例中,它们甚至能穿越血脑屏障。

  纳米粒子在器官中的行为仍然是需要研究的一个大课题。基本上,纳米颗粒的行为取决于它们的大小,形状和同周围组织的相互作用活动性。它们可能引起噬菌细胞(吞咽并消灭外来物质的细胞)的“过载”,从而引发防御性的发烧和降低机体免疫力。它们可能因为无法降解或降解缓慢,而在器官里集聚。还有一个顾虑是它们同人体中一些生物过程发生反应的潜在危险。由于极大的表面积,暴露在组织和液体中的纳米粒子会立即吸附他们遇到的大分子。这样会影响到例如酶和其他蛋白的调整机制。

环境问题

  主要担心纳米颗粒可能会造成未知的危害。

社会风险

  纳米技术的使用也存在社会学风险。在仪器的层面,也包括在军事领域使用纳米技术的可能性。(例如,在MIT士兵纳米技术研究所[1]研究的装备士兵的植入体或其他手段,同时还有通过纳米探测器增强的监视手段。

  在结构层面,纳米技术的批评家们指出纳米技术打开了一个由产权和公司控制的新世界。他们指出,就象生物技术的操控基因的能力伴随着生命的专利化一样,纳米技术操控分子的技术带来的是物质的专利化。过去的几年里,获得纳米尺度的专利像一股淘金热。2003年,超过800纳米相关的专利权获得批准,这个数字每年都在增长。大公司已经垄断了纳米尺度发明与发现的广泛的专利。例如,NEC和IBM这两家大公司持有碳纳米管这一纳米科技基石之一的基础专利。碳纳米管具有广泛的运用,并被看好对从电子和计算机、到强化材料、到药物释放和诊断的许多工业领域都有关键的作用。碳纳米管很可能成为取代传统原材料的主要工业交易材料。但是,当它们的用途扩张时,任何想要制造或出售碳纳米管的人,不管应用是什么,都要先向NEC或者IBM购买许可证。

7发展趋势

  高级纳米技术,有时被称为分子制造,用于描述分子尺度上的纳米工程系统(纳米机器)。无数例子证明,亿万年的进化能够产生复杂的、随机优化的生物机器。在纳米领域中,我们希望使用仿生学的方法找到制造纳米机器的捷径。然而,K Eric Drexler和其他研究者提出:高级纳米技术虽然最初会使用仿生学辅助手段,最终可能会建立在机械工程的原理上。

美国

  美国国家科学委员会(National Science Board)于西元2003年底批准“国家纳米科技基础结构网络计划”(National Science Board Approves Award for a National Nanotechnology Infrastructure Network,简称NNIN),将由美国13所大学共同建构支持全国纳米科技与教育的网络体系。该计划为期5年,于公元2004年一月开始执行,将提供整体性的全国性使用技能以支持纳米尺度科学工程与技术的研究与教育工作。预估5年间至少投资700亿美元的研究经费。计划目的不仅在提供美国研究人员顶尖的实验仪器与设备,并能训练出一批专精于最先进纳米科技的研究人员。

  1.美国发展最新纳米细胞制造技术

  纳米技术可制造出粒子小于人类血管大小的物体,美国国家标准与科技协会(NIST)指出已研究出一种生产一致的,且能够自行组合的纳米细胞(Nanocells)的方法,以应用在封装压缩药物的治疗工作上。这种技术当前可被运用在药物的包装技术上,可以更精确地确保药物的用量,未来将运用在癌症化学治疗的相关技术上作更进一步的研究。

  纳米计划是公元2005年联邦跨部会研发预算的主轴,达9.8亿美元。

  2.DNA检测芯片的进展

  公元2004年一月,美国HP正式对外发表其用来快速进行DNA检测的纳米级芯片。2004年在DNA检测上采以光学原理为基础的“基因微芯片法”(DNA microarrays)繁复的检测步骤,HP团队改由将此繁复步骤交由电路芯片处理;制作上,DNA检测芯片的传感元件是一条利用电子束蚀刻法(electron-beam lithography)与反应性离子蚀刻法(reactive-ion etching)所制成粗细约50纳米的纳米线。然就商业上考量,成果却过于高昂,因此研究团队正发展利用较便宜的光学蚀刻法(optical lithography)以制成DNA检测芯片元件的技术。

  3.地下水污染改善之研究

  地下水污染是现代被广泛讨论的一项重大议题,现代,美国发表了一种纳米微粒(nanoparticles)技术,在此微粒中心为铁芯(iron)而其外则由多层聚合物加以包覆,其中,内层是由防水性极佳的复合甲基丙烯酸甲脂(poly methl methacrylate;PMMA)包覆,而外层则由亲水的sulphonated polystyrene进行包覆。由于亲水性外层使纳米微粒溶于水,内层防水层则能吸引污染源三氯乙烯(trichloroethylene)。纳米微粒中的铁芯使得三氯乙烯产生分裂,进而使得此项污染源逐渐分裂成无毒的物质。

  4.启动癌症纳米科技计划

  为广泛将纳米科技、癌症研究与分子生物医学相互结合,美国国家癌症中心(NCI)提出了癌症纳米科技计划(Cancer Nanotechnology Plan),并将透过院外计划、院内计划与纳米科技标准实验室等三方面进行跨领域工作。计划设定了六个挑战:

  预防与控制癌症:发展能投递抗癌药物及多重抗癌疫苗的纳米级设备。

  早期发现与蛋白质学:发展植入式早期侦测癌症生物标记的设备,并发展能收集大量生物标记进行大量分析的平台性装置。

  影像诊断:发展可提高分辨率到可辨识单独癌细胞的影像装置,以及将一个肿瘤内部不同组织来源的细胞加以区分的纳米装置。

  多功能治疗设备:开发兼具诊断与治疗的纳米装置。

  癌症照护与生活品质提升:开发改善慢性癌症所引发的疼痛、沮丧、恶心等症状,并提供理想性投药装置。

  跨领域训练:训练熟悉癌症生物学与纳米科技的新一代研究人员。

欧盟

  1.欧盟的国际纳米科学研究政策

  欧洲为全球最早开始进行纳米科学研究的区域,但由于当时并没有欧盟加以居中协调与规划,因此在研究初期因为缺乏资金援助、相关管理上的支援,同时因为面临专利取得的问题,导致研究人员遭遇许多阻碍,公元2004年五月,欧盟议会(European Commission;EC)对欧洲地区与国际社会发表一系列有关于纳米科技的专案计划,以宣示欧洲对于提高纳米科技竞争力的决心。

  欧盟将其计划分为五个主要区域:研究与发展(R&D)、基础建设(infrastructure)、教育与训练(education and training)、创新(innovation)以及社会层面(societal dimension)。

  根据预估,如欧盟计划能顺http://baike.baidu.com/edit/%E7%BA%B3%E7%B1%B3%E6%8A%80%E6%9C%AF/144920利推展,在西元2010年前将可望为欧洲创造上百亿欧元的经济营收。欧盟议会也强调提高社会大众对于纳米科技的认知,也同样属于整体纳米发展计划的一部分。另外,公众健康、安全、环保问题及消费者保护也同样被包含在此项议题之中。现在,纳米科学及纳米科技仍属于新兴的R&D领域,其所必须解决与进行研究的对象都存在于原子与分子的阶层中。纳米科学在未来几年内的应用是众所瞩目,且必将对所有的科技产生重大影响。在未来,纳米科技的研发工作也将对人体保健、食物、环保研究、资讯科学、安全、新兴材料科学及能源储存等领域产生重大的改变。 西元2004~2006年欧盟所进行的第六期架构计划(FP6)中,纳米科技与新兴材料研发的经费约为欧元13亿,而欧盟议会也有意提高经费并延长研究时程(由公元2007~2013年)。同时为凝聚与加强所有欧盟会员国在纳米科学方面的研究,因此在规划上欧盟议会也有意召集民间与其他单位的专家凝聚共识,以强化整体欧盟在此方面研究领域的力量。

  2.创新接继中心

  在公元1995年由欧盟委员会成立“创新接继中心”(Innovation Relay Centers, IRCs)。这个的组织和美国国家科技移转中心具相同功能。区域性的创新接继中心总数近70个,支援至少位于30个国家的相关科技移转中心。创新接继中心的目的,是将有问题的公司和能提出解决方法的公司结合在一起。欧洲多数的纳米科技公司都可受到创新接济中心或区域创新和科技移转策略计划的援助。

  欧洲纳米科技计划接受金援的方式和美国大致相同,有些是属于国家型计划。欧洲有多个跨国研发机构,以泛欧工业研发网络为例,其专门提供无条件研发补助,目的将研发成果发展为产品。透过泛欧工业研发网络提供的资金补助的国家包括奥地利、挪威和英国。其他在比利时、德国、斯洛伐尼亚、冰岛和以色列还包括贷款和免偿型补助。多数情况下,补助金额不超过计划完成的所需总金额的七成,剩余部分多仰赖地方政府和其他有意愿者赞助。

日本

  1.日本理研的纳米科学研究现况

  日本理化学研究所(RIKEN,简称理研)系一跨学门的研究组织,该所各部门分布在日本的7个区域。RIKEN的主要基地-和光园区,设置发现研究中心(DRI)、新领域研究系统(FRS)及头脑科学中心(BSI)等3研究中心。RIKEN进行的研究可区分为三类:DRI主要进行小型但具备长程观点的培育研究计划;FRS同样执行小型计划,但以由上而下的方式,进行较具动态的中程及中等规模的计划;至于研究中心则是进行以目标为导向的中至长程的大型计划。RIKEN在西元2003会计年度下半年(西元2003年十月至2004年三月)的研究预算共4.748亿美元,全年预算超过9亿美元。

  公元1986年起RIKEN开始从事纳米科学之研究,但正式的纳米科学计划则是自西元2002年开始,初期选定有18项的纳米科学计划,并陆续分别在各研究中心进行。

  2.日本提高纳米科技预算与产业合作(JAPAN BOOSTS NANOTECHNOLOGY BUDGET AND INDUSTRIAL COOPERATION)

  日本科学与科技政策顾问委员会(Council for Science and Technology Policy)消息指出,日本在西元2004年会计年度(由4月1日起)中,纳米科技预算成长3.1个百分比,达到8.8亿美元。同时,两个主要负责日本纳米科技研发计划的政府部会,其预算也都有成长。负责推销即将完成的研发工作的日本经济产业省(Ministry of Economy Trade and Industry, METI),预算由西元2003年的0.97亿美元提升到公元2004年的1.1亿美元。纳米科技与相关原料研究被指定为四个最高优先项目之一,其他领域包括资讯与通讯、生命科学与环境研究。

  日本的预算是经由日本大藏省(Finance Ministry)批准,再由日本国会(Japanese Diet)制定为法律。日本文部科学省(Ministry of Education, Culture, Sports, Science and Technology, MEXT)的纳米科技研发经费,则由2.3亿美元成长到2.4亿元,将着重在基础原料研究与新药物研究计划上。

韩国

  1.韩国的纳米科技策略

  韩国政府已深切体认到纳米科技为本世纪科技发展的战略制高点,整合纳米技术与资讯、生物、材料、能源、环境、军事、航太领域之高新科技,并将创造出跨学门研究发新境界。韩国政府也理解到此新兴科技也将是创造新产业与高科技产品的驱动力,纳米科学与技术的突破性进展更将为人类能力、社会产出、国家生产力、经济成长与生命品质带来巨幅的改善。

  韩国已宣示在公元2001至2010年十年间投入韩币2,391兆元(约20亿美元)于纳米科技的研发,政府投入在纳米科技的经费,公元2002年与2000年比较,成长约400%。纳米国家计划的主要目标之一为在某些竞争性领域取得世界第一并发展产业成长的利基市场,韩国同时明确的把发展重点聚焦于诸如兆元级积体电子元件等核心关键技术。

  “2002年执行纳米技术发展计划”与“纳米结构材料技术发展”、“纳米微机电与制造技术发展”等两项新领域研究计划同步开始实施,再加上纳米科技领域研究计划在未来6~9年内每年将投入2千万美元,在众多政府研究机构林立的Daejoen科学城。韩国高等科技研究院(KAIST)于2001年设立纳米制造中心,在未来6~9年内投入1.65亿美元,政府调整“2003年纳米科技发展行动计划”,包括:纳米科技发展促进法案,其目的二:一为建构坚固的纳米科技核心研究基础,二为激励成熟纳米科技的产业化,韩国政府也将配置3.8亿美元(全国纳米科技经费的19%)于国家纳米产业化计划,其中包括产业研发基金与创投基金。

  根据公元2002年韩国专利局报道,纳米科技专利应用数目无论在国内或国外都呈现大幅成长,新兴纳米科技也在过去数年间呈现可观地成长,另外根据韩国商工能源部(MOCIE)的统计,西元2002年纳米科技新创公司也如雨后春笋纷纷抢搭纳米科技列车。

  2.韩国预测国际市场对纳米纺织品的需求将快速增加

  韩国产业资源部预测,今后9年国际市场对纳米纺织品的需求将会出现迅速增长的趋势,交易额可望达到近400亿美元。韩国产业资源部委托韩国纤维产业联合会从西元2004年八月份开始的三个月内,对国际市场对纳米纺织品的需求和贸易趋势进行研究分析。

  韩国产业资源部分析认为,国际市场对纳米纺织品的需求金额以150亿美元为基准,今后每年将递增10.7%,到公元2007年和2012年,国际市场对纳米纺织品的需求金额将分别达到240亿美元和397亿元。到西元2012年,国际市场对用于制药、电子和生命科学的超高效能过滤纳米纺织品的需求金额将达到96亿美元,对用于防生化武器和体育娱乐的纳米纺织品的需求金额将达到26亿美元,对用于储存能源的纳米纺织品的需求金额将达到205亿美元。

  韩国对纳米纺织品的需求金额为19亿美元,占国际市场需求总额的12.1%。到西元2012年,韩国对纳米纺织品的需求金额将达到72亿美元,占当时国际市场需求总额的18.1%。

  3.韩国在纳米科技的发展几乎完全集中在微电子产业

  透过由韩国科技部(Ministry of Science and Technology)赞助的兆位水平纳米设备发展计划(Tera-Level Nanodevices Initiatives),韩国的大学和产业都专注于发展下一世代微电子设备,包括具有兆位元(terabit)容量的内存设备和具有兆赫兹(terahertz)资料处理速度的元件。

  韩国最大企业财团之一的三星设有一个先进科技研究所(Advanced Institute of Technology),从事微电子科技的研究和商业化发展。

中国台湾

  台湾自公元1996年以来,国科会、经济部、教育部等部会已支持许多个别计划从事有关于纳米科技的研发,较九十年代的如教育部的卓越计划、国科会纳米材料尖端研究计划、经济部技术处纳米技术环境建构及其产业应用评估计划等等。为了有效地运用资源,并整合产官学研的智慧与力量,以提升国际竞争力;自西元2000年起,国科会即开始规划推动纳米科技计划。

  公元2000年12月“中华民国行政院科技顾问会议”与西元2001年一月第六次“全国科学技术会议”(全国科技会议)之结论,均指出纳米科技为台湾未来产业发展重点领域方向,国科会遂于西元2002年十一月廿一日成立工作小组办公室,负责国家型计划之规划,“纳米国家型科技计划工作小组”之成员由国科会、行政院科技顾问组、中研院、中华民国教育部、工研院、经济部、行政院原子能委员会及行政院环境保护署等单位共二十五位代表组成。

  国科会并于公元2002年一月十五日召开第一五五次委员会议,讨论“纳米国家型科技计划”构想;于西元2002年六月第一五七次委员会议中通过纳米国家型科技计划审议,自西元2003年一月正式开始推动,并决定自西元2003年至西元2008年间,投入经费新台币231.9亿元于纳米科技发展;并于同年九月一日正式成立纳米国家型计划办公室,执行整体计划之领导、策划与管考。

中国

  1.“中国实验室国家认可委员会”是负责实验室和检查机构认可及相关工作的认可机构,为规范纳米产品市场、推动制定相关纳米材料及产品的标准,“国家纳米科学中心”和“中国实验室国家认可委员会”会商多次,联合成立“纳米技术专门委员会”,挂靠在“国家纳米科学中心”。

  2. 中国政府透过中国科学院主导众多纳米科技研发计划,多数强调半导体制造技术和发展以纳米科技为基础的电子元件,另一是利用纳米材料保存考古文物。

  已成功发展出的产品包括新式冷气机,其特点为利用创新的纳米材质。另估计约有两百家企业积极从事纳米科技产品的商业化。

加拿大

  滑铁卢大学是全世界第一所设立以纳米科技工程为主科的大学。在2005年开始收生并在2010年开设纳米科技工程硕士班。在2012年,将会有一座量子纳米中心。

  多伦多大学也拥有以纳米科技工程为副科的科学工程的大学。

  圭尔夫大学则已设立了纳米科学。 

  • 快速搜索
  • 热门词条