简介
全光通信的实现,可以分为两个阶段来完成:首先是在点-点光纤传输系统中,整条线路中间不需要作任何光/电和电/光的转换,这样,网内光信号的流动就没有光电转换的障碍,信息传递过程无需面对电子器件速率难以提高的困难。这样的长距离传输完全靠光波沿光纤传播,称为发端与收端间点-点全光传输。那么整个光纤通信网任一用户地点应该可以设法做到与任一其它用户地点实现全光传输,这样就组成全光传送网;其次在完成上述用户间全程光传送网后,有不少的信号处理、储存、交换,以及多路复用/分接、进网/出网等功能都要由电子技术转变成光子技术完成,整个通信网将由光实现传输以外的许多重要功能,完成端到端的光传输、交换和处理等,这就形成了全光通信发展的第二阶段,将是更完整的全光通信。
组成
全光通信网由全光内部部分和通用网络控制部分组成,内部全光网是透明的,能容纳多种业务格式,网络节点可以通过选择合适的波长进行透明的发送或从别的节点处接收。通过对波长路由的光交叉设备进行适当配置,透明光传输可以扩展到更大的距离。外部控制部分可实现网络的重构,使得波长和容量在整个网络内动态分配以满足通信量、业务和性能需求的变化,并提供一个生存性好、容错能力强的网络。
近十年来,国际上对全光通信传输的研究特别活跃。主要是因为光纤通信技术的飞速发展和数据通信业务需求的剧增,促使人们研究开发传输容量更大、传输频带更宽的通信方式。光纤通信自20世纪90年代开始应用波分复用(WDM)技术后,很快就从“一纤一波”发展到“一纡多波”,特别是密集波分复用(DWDM)技术的采用,一根光纤已从传送40波发展到l60波,传送带宽已达10吉赫,并向40吉赫发展,展现了极大的潜力。可是,在传统的光纤通信系统中,当光信息流传送到节点时,都需要将光信号转变为电信号,再由电子器件对电信号进行处理,然后再将电信号转变为光信号继续往下传送。而电子器件的处理能力相对于光纤通信的发展来说已经是跟不上了,而且存在节点不灵活、选路能力差等问题,这就成了光纤通信发展的“电子瓶颈”。
采用技术
全光通信的实现将使上述问题迎刃而解。实现透明的、具有高度生存性的全光通信网是宽带通信网未来发展目标,而要实现这样的目标需要有先进的技术来支撑,下面就是实现准确、有效、可靠的全光通信应采用的技术:
1、光层开销处理技术:该技术是用信道开销等额外比特数据从外面包裹Och客户信号的一种数字包封技术,它能在光层具有管理光信道(Och)的OAM(操作、管理、维护)信息的能力和执行光信道性能监测的能力,该技术同时为光网络提供所有SONET/SDH网所具有的强大管理功能和高可靠性保证。
2、光监控技术:在全光通信系统中,必须对光放大器等器件进行监视和管理。一般技术采用额外波长监视技术,即在系统中再分插一个额外的信道传送监控信息。而光监控技术采用1510nm波长,并且对此监控信道提供ECC的保护路由,当光缆出现故障时,可继续通过数据通信网(DCN)传输监控信息。
3、信息再生技术:大家知道,信息在光纤通道中传输时,如果光纤损耗大和色散严重将会导致最后的通信质量很差,损耗导致光信号的幅度随传输距离按指数规律衰减,这可以通过全光放大器来提高光信号功率。色散会导致光脉冲发生展宽,发生码间干扰,使系统的误码率增大,严重影响了通信质量。因此,必须采取措施对光信号进行再生。目前,对光信号的再生都是利用光电中继器,即光信号首先由光电二极管转变为电信号,经电路整形放大后,再重新驱动一个光源,从而实现光信号的再生。这种光电中继器具有装置复杂、体积大、耗能多的缺点。而最近,出现了全光信息再生技术,即在光纤链路上每隔几个放大器的距离接入一个光调制器和滤波器,从链路传输的光信号中提取同步时钟信号输入到光调制器中,对光信号进行周期性同步调制,使光脉冲变窄、频谱展宽、频率漂移和系统噪声降低,光脉冲位置得到校准和重新定时。全光信息再生技术不仅能从根本上消除色散等不利因素的影响,而且克服了光电中继器的缺点,成为全光信息处理的基础技术之一。
4、动态路由和波长分配技术:给定一个网络的物理拓扑和一套需要在网络上建立的端到端光信道,而为每一个带宽请求决定路由和分配波长以建立光信道的问题也就是波长选路由和波长分配问题(RWA)。目前较成熟的技术有最短路径法、最少负荷法和交替固定选路法等。根据节点是否提供波长转换功能,光通路可以分为波长通道(WP)和虚波长通道(VWP)。WP可看作VMP的特例,当整个光路都采用同一波长时就称其为波长通道反之是虚波长通道。在波长通道网络中,由于给信号分配的波长通道是端到端的,每个通路与一个固定的波长关联,因而在动态路由和分配波长时一般必须获得整个网络的状态,因此其控制系统通常必须采用集中控制方式,即在掌握了整个网络所有波长复用段的占用情况后,才可能为新呼叫选一条合适的路由。这时网络动态路由和波长分配所需时间相对较长。而在虚波长通道网络中,波长是逐个链路进行分配的,因此可以进行分布式控制,这样可以大大降低光通路层选路的复杂性和选路所需的时间但却增加了节点操作的复杂性。由于波长选路所需的时间较长,近期提出了一种基于波长作为标记的多协议波长标记交换(MPLS)的方案,它将光交叉互联设备视为标记交换路由器进行网络控制和管理。在基于MPLS的光波长标记交换网络中的光路由器有两种:边界路由器和核心路由器。边界路由器用于与速率较低的网络进行业务接入,同时电子处理功能模块完成MPLS中较复杂的标记处理功能,而核心路由器利用光互联和波长变换技术实现波长标记交换和上下路等比较简单的光信号处理功能。它可以更灵活地管理和分配网络资源,并能较有效地实现业务管理及网络的保护、恢复。
5、光时分多址(OTDMA)技术:该技术是在同一光载波波长上,把时间分割成周期性的帧,每一个帧再分割成若干个时隙(无论帧或时隙都是互不重叠的),然后根据一定的时隙分配原则,使每个光网络单元(ONU)在每帧内只按指定的时隙发送信号,然后利用全光时分复用方法在光功率分配器中合成一路光时分脉冲信号,再经全光放大器放大后送入光纤中传输。在交换局,利用全光时分分解复用。为了实现准确,可靠的光时分多址通信,避免各ONU向上游发送的码流在光功率分配器合路时可能发生碰撞,光交换局必须测定它与各ONU的距离,井在下行信号中规定光网络单元(ONU)的严格发送定时。
6、光突发数据交换技术:该技术是针对目前光信号处理技术尚未足够成熟而提出的,在这种技术中有两种光分组技术:包含路由信息的控制分组技术和承载业务的数据分组技术。控制分组技术中的控制信息要通过路由器的电子处理,而数据分组技术不需光电/电光转换和电子路由器的转发,直接在端到端的透明传输信道中传输。
7、光波分多址(WDMA)技术:该技术是将多个不同波长且互不交叠的光载波分配给不同的光网络单元(ONU),用以实现上行信号的传输,即各ONU根据所分配的光载波对发送的信息脉冲进行调制,从而产生多路不同波长的光脉冲,然后利用波分复用方法经过合波器形成一路光脉冲信号来共享传输光纤并送入到光交换局。在WDMA系统中为了实现任何允许节点共享信道的多波长接入,必须建立一个防止或处理碰撞的协议,该协议包括固定分配协议、随机接入协议(包括预留机制、交换和碰撞预留技术)及仲裁规程和改装发送许可等。
8、光转发技术:在全光通信系统中,对光信号的波长、色散和功率等都有特殊的要求,为了满足ITU-T标准规范,必须采用光-电-光的光转发技术对输入的信号光进行规范,同时采用外调制技术克服长途传输系统中色散的影响。光纤传输系统所用的光转发模块主要有直接调制的光转发模块和外调制的光转发模块两种。外调制的光转发模块包括电吸收(EA)调制和LiNbO3调制等。在光纤传输系统中,选用那种光发模块要根据实际传输距离和光纤的色散情况而定。在全光通信系统中,可以采用多种调制类型的光转发模块,色散容限有1800/4000/7200/12800ps/nm等诸多选择,满足不同的传输距离的需求,为用户提供从1km至640km各种传输距离的最佳性能价格比解决方案,并且光转发单元发射部分的波长稳定度在0~60°C范围内小于±3GHz。
9、副载波多址(SCMA)技术:该技术的基本原理是将多路基带控制信号调制到不同频率的射频(超短波到微波频率)波上,然后将多路射频信号复用后再去调制一个光载波。在ONU端进行二次解调,首先利用光探测器从光信号中得到多路射频信号,并从中选出该单元需要接收的控制信号,再用电子学的方法从射频波中恢复出基带控制信号。在控制信道上使用SCMA接入,不仅可降低网络成本,还可解决控制信道的竞争。
10、空分光交换技术:该技术的基本原理是将光交换元件组成门阵列开关,并适当控制门阵列开关,即可在任一路输入光纤和任一输出光纤之间构成通路。因其交换元件的不同可分为机械型、光电转换型、复合波导型、全反射型和激光二极管门开关等,如耦合波导型交换元件钥酸钾,它是一种电光材料,具有折射率随外界电场的变化而发生变化的光学特性。以铌酸钾为基片,在基片上进行钛扩散,以形成折射率逐渐增加的光波导,即光通路,再焊上电极后即可将它作为光交换元件使用。当将两条很接近的波导进行适当的复合,通过这两条波导的光束将发生能量交换。能量交换的强弱随复合系数。平行波导的长度和两波导之间的相位差变化,只要所选取的参数适当,光束就在波导上完全交错,如果在电极上施加一定的电压,可改变折射率及相位差。由此可见,通过控制电极上的电压,可以得到平行和交叉两种交换状态。
11、光放大技术:为了克服光纤传输中的损耗,每传输一段距离,都要对信号进行电的“再生”。随着传输码率的提高,“再生”的难度也随之提高,成了信号传输容量扩大的“瓶颈”。于是一种新型的光放大技术就出现了,例如掺铒光纤放大器的实用化实现了直接光放大,节省了大量的再生中继器,使得传输中的光纤损耗不再成为主要问题,同时使传输链路“透明化”,简化了系统,成几倍或几十倍地扩大了传输容量,促进了真正意义上的密集波分复用技术的飞速发展,是光纤通讯领域上的一次革命。
12、时分光交换技术:该技术的原理与现行的电子程控交换中的时分交换系统完全相同,因此它能与采用全光时分多路复用方法的光传输系统匹配。在这种技术下,可以时分复用各个光器件,能够减少硬件设备,构成大容量的光交换机。该技术组成的通信技术网由时分型交换模块和空分型交换模块构成。它所采用的空分交换模块与上述的空分光交换功能块完全相同,而在时分型光交换模块中则需要有光存储器(如光纤延迟存储器、双稳态激光二极管存储器)、光选通器(如定向复合型阵列开关)以进行相应的交换。
13、无源光网技术(PON):无源光网技术多用于接入网部分。它以点对多点方式为光线路终端(OLT)和光网络单元(ONU)P这间提供光传输媒质,而这又必须使用多址接入技术。目前使用中的有时分多址接入(TDMA)、波分复用(WDM)、副载波多址接入(SCMA)3种方式。PON中使用的无源光器件有光纤光缆、光纤接头、光连接器、光分路器、波分复用器和光衰减器。拓扑结构可采用总线形、星形、树形等多种结构。
全光通信网这种网络内部是透明的光网络,能容纳多种业务格式。网络节点可以通过选择合适的波长进行透明的发送或接收。通过对光交叉连接(OXC)的适当配置,可以进一步扩展透明光传输的距离。在全光网的外部还有一个通用网络控制部分,用来实现网络的重构,使得波长和容量能在整个网络内进行动态分配,以适应通信和业务性能不断变化的需要。
按照分层的概念,全光网络一般由业务层、适配层和光层组成。而光传输网又可以垂直划分为3个独立的网络层,即光通路层、光复用段层和光传输段层。光通路层为透明传输各种不同格式的客户层信号的光通路提供端到端的联网功能;光复用段层为多波长光信号提供联网功能;光传输段层为光信号提供在各种不同类型的光传输媒质中传输的功能。整个光传输网由光纤构成的物理媒质层所支持。
全光网络由于从端到端采用透明的光通路连接,因而具有结构简单、便于维护、可靠性高以及具有网络可扩展性等优点;它以波长选择路由,对传输码率、数据格式及调制方式均具有透明性,可提供多种协议的业务。此外,由于它能根据业务量需求的变化改变网络结构,具有网络的可重组性,因而有利于网络资源的充分利用。