侵权投诉
首页 / 百科 / 边缘计算
边缘计算

边缘计算

分类: 物联网
属性: 技术
最后修改时间: 2024年05月11日
本词条对我有帮助29
边缘计算,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。

       边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可以访问边缘计算的历史数据

主要用途

  看似“生僻”的边缘计算其实并不“边缘”,而且意义重大。边缘计算和云计算有些类似,都是处理大数据的计算运行方式。但不同的是,这一次,数据不用再传到遥远的云端,在边缘侧就能解决,更适合实时的数据分析和智能化处理,也更加高效而且安全。

  如果说物联网的核心是让每个物体智能连接、运行,那么边缘计算就是通过数据分析处理,实现物与物之间传感、交互和控制。它是物联网从概念到应用的一把钥匙,更是制造业从“笨拙”变得“智慧”的重要途径。

  工信部信息化和软件服务业司副司长安筱鹏在会上说,传统制造业向智能化升级的过程中,特别需要通过边缘计算技术,将车间里的生产设备智能连接,提高效率,创新模式。

  当前,全球数字化革命正引领新一轮产业变革。物联网也被普遍认为是推动传统产业变革和全球经济发展的又一次浪潮。据统计,到2020年将有超过500亿的终端与设备互联。未来超过50%的数据需要在边缘侧分析、处理和储存。边缘计算应用广阔,机遇无限。

  专家观点

  边缘计算产业联盟理事长、中国科学院沈阳自动化研究所所长于海斌指出:“中国在‘十三五’规划中提出的两化融合、中国制造2025等国家战略,对ICT与OT的融合提出了迫切的需求,而边缘计算是ICT与OT融合的支撑与使能技术,产业发展将进入重要机遇期。工业自动化技术体系将从分层架构、信息孤岛向物联网、云计算、大数据分析架构演进。而边缘计算将是实现分布式自治控制工业自动化架构的重要支撑。

从分布式开始

       边缘计算并非是一个新鲜词。作为一家内容分发网络CDN和云服务的提供商AKAMAI,早在2003年就与IBM合作“边缘计算”。作为世界上最大的分布式计算服务商之一,当时它承担了全球15-30%的网络流量。在其一份内部研究项目中即提出“边缘计算”的目的和解决问题,并通过AKAMAI与IBM在其WebSphere上提供基于边缘Edge的服务。

       对物联网而言,边缘计算技术取得突破,意味着许多控制将通过本地设备实现而无需交由云端,处理过程将在本地边缘计算层完成。这无疑将大大提升处理效率,减轻云端的负荷。由于更加靠近用户,还可为用户提供更快的响应,将需求在边缘端解决。

和云计算区别

       边缘计算和云计算在多个方面存在显著的区别,主要包括以下几个方面:

数据处理位置

       云计算是将数据集中处理存储在云端的数据中心,而边缘计算则将数据处理放置在更接近数据来源的边缘设备上。这意味着边缘计算能够更快地响应和处理数据,减少了数据传输的延迟。

数据处理方式

       云计算是以大规模数据中心为核心,通过高效的计算和存储设施进行数据处理。而边缘计算则通过在设备端的计算能力,对数据进行本地处理,降低了数据传输和处理延迟。这种本地处理方式使得边缘计算在实时性要求较高的应用场景中具有优势。

应用场景

       云计算主要适用于大规模数据的存储和处理,如企业业务系统、大型科研项目等。而边缘计算主要适用于需要快速响应的应用场景,如智能家居智能制造、物流配送等。这些场景需要实时响应和快速处理数据,因此边缘计算能够提供更加高效的服务。

网络通信模式

       云计算主要依赖互联网和企业内部网络进行数据传输。而边缘计算则通过本地网络或无线传输技术,降低了数据传输时延。这使得边缘计算在处理实时数据和需要快速响应的应用中更具优势。

安全性

       云计算数据存储在云端数据中心,需要保证云端的安全性。而边缘计算通过在设备端进行数据处理,保护了数据隐私和安全性。因为数据在传输过程中可能面临被截获或篡改的风险,而在设备端进行数据处理可以减少这种风险。

架构模式和计算方式

       从架构模式看,云计算实现了计算服务的集中化,通过虚拟化和网络将所有的资源整合到巨大的资源池后再按需分发。而边缘计算则采用分布式架构,在边缘节点对数据就近处理,减少了网络带宽资源占用、降低了对云端的依赖性。从计算方式看,云计算完全在云端进行,数据被传输到云端进行处理或提取;而边缘计算可以发生在边缘设备和云平台之间的各个节点,数据处理及计算过程可直接在本地进行。

       总的来说,边缘计算和云计算在数据处理位置、方式、应用场景、网络通信模式、安全性和架构模式等方面存在显著的差异。这些差异使得它们在不同的应用场景中具有不同的优势和适用性。

物联网应用

       边缘计算在物联网(IoT)中有广泛的应用,以下是一些主要的应用场景:

智能交通系统

       在智能交通系统中,边缘计算技术被用来实时处理和分析来自交通信号灯、路牌和摄像头等设备的传感器数据。这些数据可以帮助推断交通拥堵状况并优化信号控制,从而提高交通流量的管理和监控效率。

工业自动化

       在工业生产过程中,许多传感器和机器被用来监测设备状态并采集实时数据。边缘计算技术可以将数据处理推向设备边缘,实现快速实时的决策和反应。例如,在生产线上,边缘计算设备可以分析实时数据,检测设备故障并发送警报,以及优化设备调度,提高生产效率和品质。

智能家居

       边缘计算技术在智能家居领域的应用案例丰富多样。智能音箱、智能照明智能安防等设备可以通过边缘计算技术实现实时响应和智能控制。例如,智能音箱可以通过边缘计算设备实时处理语音指令,并与其他智能设备进行互联。

智能城市

       边缘计算有助于实现智能城市,通过将处理和数据存储移动到设备边缘,可以更快地收集和分析城市数据,从而更好地管理城市资源和提高城市效率。例如,在智能环保领域,边缘计算可以帮助实现更高效和准确的农业和环保监测,通过收集和分析环境数据来更好地管理资源。

医疗保健

       边缘计算技术在医疗保健领域的应用也越来越受到关注。通过将处理和数据存储移动到设备边缘,可以更快地收集和分析医疗数据,从而更快速地实现诊断和治疗。这有助于更好地管理患者病情和提高治疗效果。

视频监控

       边缘计算可以帮助实现更高效和准确的视频监控。通过将处理和分析移动到设备边缘,可以更快地检测到事件和目标,从而更早地发出警报。这对于安全监控和事件响应具有重要意义。

物流和运输

       在物流和运输领域,边缘计算可以帮助实现更高效和准确的物流和运输管理。通过将处理和数据存储移动到设备边缘,可以更快地收集和分析运输数据,从而优化物流路径和运输效率。

       此外,边缘计算还可以降低能源消耗,特别是在处理大量分散的设备或物体时。同时,它还可以延伸网络覆盖范围并增强安全性,因为数据只在本地进行处理,减少了数据传输过程中的泄露风险。随着物联网设备的不断增加,产生了海量的数据。边缘计算可以实现对这些数据的实时处理和分析,满足大规模多样化数据分析的需求。

       总之,边缘计算在物联网领域具有广泛的应用前景和优势,可以帮助提高数据处理速度、降低延迟、增强安全性并优化资源管理。

发展前景

       边缘计算的发展前景十分广阔,以下是一些可能的发展趋势和前景:

市场规模迅速增长

       随着物联网、5G等技术的快速发展,边缘计算市场规模正迅速增长。预计未来几年,边缘计算市场将持续保持高速增长,特别是在智能制造、智慧城市自动驾驶等领域的应用将更加广泛。

实时性和低延迟性需求增加

       边缘计算将数据处理和分析推向设备边缘,能够实现更快的响应速度和更低的延迟。因此,对于需要实时响应和低延迟的应用场景,如智能制造、自动驾驶等,边缘计算具有显著优势。未来,这些领域对边缘计算的需求将进一步增加。

与云计算协同发展

       边缘计算和云计算并不是相互替代的,而是协同发展的关系。云计算提供大规模数据存储和计算能力,而边缘计算则提供实时性和低延迟性。未来,边缘计算和云计算将更加紧密地结合,共同推动数字化转型和智能化升级。

安全性需求提升

       随着物联网设备的不断增加,网络安全问题日益凸显。边缘计算通过将数据处理和分析推向设备边缘,可以减少数据传输过程中的泄露风险。因此,未来边缘计算在安全性方面的需求将进一步提升,包括数据加密、身份认证、访问控制等方面的技术将不断得到加强。

技术创新和应用拓展

       随着技术的不断创新和应用场景的拓展,边缘计算将不断涌现新的应用场景和技术创新。例如,在人工智能领域,边缘计算可以与人工智能技术结合,实现更快速、更智能的数据处理和分析。在智能制造领域,边缘计算可以实现对生产设备的实时监测和预测性维护等。

产业合作和生态构建

       边缘计算涉及多个产业和领域,需要各方共同合作和构建生态。未来,边缘计算产业将进一步加强合作和协同,形成更加完善的产业生态。同时,随着边缘计算技术的不断成熟和应用场景的拓展,将吸引更多的企业和资本进入该领域,推动产业的快速发展。

       总之,边缘计算作为一种新型的计算范式,具有广阔的应用前景和发展空间。未来随着技术的不断创新和应用场景的拓展,边缘计算将在更多领域发挥重要作用,推动数字化转型和智能化升级。

  • 快速搜索
  • 热门词条

粤公网安备 44030502002758号